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Social Media
Nodes are people
Edges are friendships

Chemistry
Nodes are atoms
Edges are chemical bonds

Finance ] dMaZoON E-commerce
Nodes are accounts Nodes are users/products
Edges are transactions eb y h l Edges are purchases
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Graph-structured data are ubiquitous

A real-world graph example:

Nodes: Authors Papers Venues

a > /. AAAI

2 1%/ #3 ICLR

Edges: write publish at
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Graph Machine Learning: Recent Trending

Graph Machine Learning is on fire &

YYTIXYYX
Number of papers with 'graph’ in title (ArXiv).
3,000
2,500 2426 (+47%)
Beginning of Machine
Learning on graphs
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: 1651 (+48%)

I
1,500 :

i
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+
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Graph Machine Learning: Previous Tutorials

o Graph Neural Networks: Foundations, Frontiers, Applications
IJCAI 2022, KDD 2022, AAAI 2023, KDD 2023, WWW 2023

o Graph Neural Networks: Models and Applications
« AAAI 2020, AAAI 2021

o Large-Scale Graph Neural Networks: The Past and New Frontiers
KDD 2023

o Self-supervised Learning and Pre-training on Graphs
« WWW 2023

Knowledge-enhanced Graph Learning



Graph Neural Networks: Foundations

Key idea: aggregates information from node neighborhood

Layer-0

Layer-1 A

Ta rg et ‘ A‘: ................ ‘
Node ™~ Layer-2 A

o ‘_...:j_j'ff.'.'.‘ ........ B

e < : ................. .4'. vv ...... .
®
y ®

Input Graph The Computation Process for Node A
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Graph Neural Networks: Foundations

Key idea: aggregates information from node neighborhood

Neural networks that aggregate information

Target

Node ™~

Input Graph The Computation Process for Node A

9
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Graph Neural Networks: Foundations

o Nodes have embeddings at each layer
o “Layer-0" embedding is the input feature of nodes

Layer-0
Layer-1 @
Ta rg et ‘ A‘: ................ '
o @
e : .............. . 4’. v' ...... .
y ®
Input Graph The Computation Process for Node A
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Graph Neural Networks: Foundations

The computation graph is defined by neighborhood

Every node defines a unique
computation graph!

INPUT GRAPH
® ® & )i ® @
o - - L -
& w98 % X e # = % o o e
®e O ® o ®oo0® o ® o ® o
‘ : ‘ %. ‘ 2 .%%6 i - ‘0. - %'! ‘& %‘. “
€ S5 d® % ee® Medg e s deL e 55, o
Node A Node B Node C Node D Node E Node F
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Graph Neural Networks: Foundations

Basic approach: Average neighbor information and apply a
neural network

Initial “layer 0" embeddings are  reyious layer

- — equal to node features embedding of v

T

kth layer

embedding non-linearity (e.g.,
of v RelU or tanh)

average of neighbor’s
previous layer embeddings

12
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Graph Neural Networks: Foundations

Existing GNNs primarily focus on leveraging graph structures
and node features

GNN = f(Graph Structure, Node Features)

Model Conference Citation

Graph Structure: A GCN ICLR 2017 29000+
GraphSAGE | NeurlPS 2017 12000+

m, GAT ICLR 2018 8000+

GIN ICLR 2019 6000+

Node Features: X

13
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Graph Neural Networks: New Frontiers

Existing GNNs primarily focus on leveraging graph structures
and node features

N

Enhancing graph learning with auxiliary knowledge

14
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Graph Neural Networks: New Frontiers

Existing GNNs primarily focus on leveraging graph structures
and node features

N

Enhancing graph learning with auxiliary knowledge

. Important and useful information that can be obtained, extracted,
i or learned from resources beyond the provided graph structures

and node features

15
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Graph Neural Networks: New Frontiers

Existing GNNs primarily focus on leveraging graph structures
and node features

N

Enhancing graph learning with auxiliary knowledge

N

Knowledge-enhanced Graph Learning
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Graph Neural Networks: New Frontiers

Existing GNNs primarily focus on leveraging graph structures
and node features

N

Enhancing graph learning with auxiliary knowledge

N

Knowledge-enhanced Graph Learning

Reduce reliance on massive ‘ Performance ’I‘ Efficiency 'I‘
data and intricate model Trustworthiness

17
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Knowledge-enhanced Graph Learning

Agenda

Knowledge from Data

Knowledge from Models

Implicit - Knowledge Knowledge
Data | — =5 | Model —_—
Knowledge Model Model
N Data Knowledge |/ | Learned Knowledge |/
4 Knowledge from N Knowledge from A
L Humans and Domains External Sources
Explicit
Knowledge

Human/ | Knowledge Model
Domain | —> | Mode

k Domain Knowledge —/

Knowledge-enhanced Graph Learning

External | Knowledge Model
Sources | —> ode

k External Knowledge —/

D) ©

8Rec‘ =] =] 1=

Real-world Applications

o y
«”, %

hh

Future Directions
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Tutorial Outline

Preliminaries and Foundations

Graph Learning Enhanced by Knowledge from Data

G

Graph Learning Enhanced by Knowledge from Models

Graph Learning Enhanced by Knowledge from Humans and Domains

Graph Learning Enhanced by Knowledge from External Sources

Knowledge-enhanced Graph Learning for Real-world Applications

Summary and Future Directions "



Graph Data are Complex

Data Property Knowledge

Node positions

Graph Structure Local communities

p1p2p3 p1p2p3

edge 1 p1|1|1]0 p1[1]1]0

) O O O p2|1]1]1] p2[1]1]0

a., O Qe_d_gfg_ p3[0 1|1 p3|0]0]1

lelo) Co-author Co-venue
Node Features Heterogenleous Higher-order
Information Semantics

Part | - Data Knowledge 20
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Fundamental GNNs Focus on Data Property

Data Property
GNN = f(Graph Structure, Node Features)

Model Conference Citation
GCN ICLR 2017 29000+
Graph Structure GraphSAGE | NeurlPS 2017 12000+
GAT ICLR 2018 8000+
“1000 GIN ICLR 2019 6000+
Node Features Knowledge is missed

Part | - Data Knowledge 21
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Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

* Node sampling for node positions

2) multiple-instance level perception
« Path sampling for positional and semantic information

« Subgraph sampling for community information

Part | - Data Knowledge 22
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Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

@ * Node sampling for node positions

2) multiple-instance level perception
« Path sampling for positional and semantic information

« Subgraph sampling for community information

Part | - Data Knowledge 23
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Node Sampling for Node Positions

Why do we need to emphasize node position?
Different types of tasks

A A V
B B A A o B
(%)

A A A 5

Structure-aware task: nodes Position-aware task: nodes
labeled by structural roles labeled by positions
Part | - Data Knowledge 24
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Node Sampling for Node Positions

GNNs usually work well on structure-aware task

A A

B B .

B Computation graph of

2 .

nodes v; and v, differs
A A
A B
Structure-aware task: nodes &
labeled by structural roles
Part | - Data Knowledge 25
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Node Sampling for Node Positions

GNNs usually perform poorly on position-aware task

Computation graph of nodes A B
v, and v, are the same

A B

= Position-aware task: nodes
labeled by positions

Part | - Data Knowledge 26
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Node Sampling for Node Positions

To encode node positions, define anchor

* Randomly pick a node as an
A B
anchor node A
S1
* Represent v; and v, with A B
shortest distances to the anchor Anchor
\o [ s )
vy | 1 a coordinate axis
Vs
Part | - Data Knowledge Position-aware Graph Neural Networks 27
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Node Sampling for Node Positions

To encode node positions, define anchor

« pick more nodes as anchors for
more coordinate axes A A q E
S S
* Represent v; and v, with A 3
shortest distances to these Anchor Anchor
anchors l l
\ 51 | 52 many coordinate axes
vi| 1] 2
Uy
Part | - Data Knowledge Position-aware Graph Neural Networks 28
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Node Sampling for Node Positions

To encode node positions, define anchor

* Problem: v; and v; have same : .
shortest distances to these
anchors 3 B

Anchor Anchor

T oo

many coordinate axes

%1

U3

Part | - Data Knowledge | Position-aware Graph Neural Networks 29
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Node Sampling for Node Positions

To encode node positions, define anchor

* |Include multiple nodes in an

B
anchor: anchor-set B
S2
» Better position R
estimation/encoding Anchor
Anchor-set
S1 | S2 |53
v, 1 Anchor-set can distinguish v,
N 0 and v3, while anchor cannot
3
Part | - Data Knowledge Position-aware Graph Neural Networks 30
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Node Sampling for Node Positions

To use obtained positional encoding

We can simply concatenate it with node features and use them as usual

S1 ]S, | S3
concatenate ( 2! 1 , @ )
(elel9)
Vg 0
Positional encoding Node features

Problem: sending this concatenated feature to a neural network cannot
preserve the permutation invariant property of positional encoding

Part | - Data Knowledge | Position-aware Graph Neural Networks 31
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Node Sampling for Node Positions

To use obtained positional encoding, design P-GNN with
permutation invariant aggregation (e.g., mean)

Calculate distance to each node in anchor sets

Nod Average distances to generate
ode /' message of each anchor set

embeddlngs
Average all messages
o | P, AGGy, Pl g g
Si|—+M,, [1] AGGg ~ Next |
hy, | ho, R layer ~ Embedding for
- next layer
Sz My, [2] €R
hv; hy, ~ ] Output Final output
> v1 > | u u
oo, | ooy 153 Mo, 31 € R’
Anchor-set selection Embedding computation for node v,
Part | - Data Knowledge Position-aware Graph Neural Networks 32
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Node Sampling for Node Positions
P-GNNs outperforms GNNs

Link Prediction task, measured in ROC AUC

Grid-T Communities-T  Grid Communities PPI

GCN 0.698 +£0.051 0.981+0.004 0.4564+0.037 0.5124+0.008  0.769 + 0.002

GraphSAGE ~ 0.682 +£0.050 0.978 £0.003  0.532+0.050 0.516 +0.010  0.803 % 0.005

GAT 0.704 +£0.050 0.980 +0.005 0.566 4+ 0.052 0.618 +0.025  0.783 + 0.004

GIN 0.732+0.050 0.984 +0.005 0.499 4+ 0.054 0.6924+0.049  0.782 4 0.010

Different variants of P.GNN | FONN-F-IL| 0.5424£0.057  0.930£0.093  0.61940.080  0.939£0.083 0719 £0.027

irerent variants of - P-GNN-F-2L | 0.637 +£0.078 0.989 +0.003 0.694+ 0.066 0.991 +0.003 0.805 + 0.003
with fast or regular way of

calculating shortest bath P-GNN-E-1L| 0.665+0.033 0.966 +0.013  0.879+0.039 0.985+0.005 0.775 %+ 0.029

9 P P-GNN-E-2L| 0.834+0.099 0.98840.003 0.940 4 0.027 0.985+0.008 0.808 + 0.003

+66%

When graphs come with rich features (e.g., PPl dataset), the performance improvement
is smaller, because node features may already capture positional information

Part | - Data Knowledge
Knowledge-enhanced Graph Learning
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Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

 Node sampling for node positions

2) multiple-instance level perception
@ « Path sampling for positional and semantic information

« Subgraph sampling for community information

Part | - Data Knowledge 34
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Path Sampling for Positions and Semantics

Sample a path of nodes for positions, e.g., via random walk

* Nodes appeared in a sampled
path are similar

« Similarity between nodes in a
graph translated to closeness in
embedding

1%
T~ u (eeee)  Positional embedding

Part | - Data Knowledge | DeepWalk: Online Learning of Social Representations 35
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| - | P
Path Sampling for Positions and Semantics

Heterogeneous graphs contain rich information with semantics = I

Authors Papers Venues i
!
! edge 1
-4 > Jn) AAAL g 89{292_0
:
: % _— #3 ICLR i Heterogeneous
| Information
Heterogeneous graph :
Part | - Data Knowledge | 36
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Path Sampling for Positions and Semantics

Sample a path of nodes for semantics, e.g., via metapaths

Authors Papers Venues

a >// AAAI
S % __— DICLR

Heterogeneous graph

g — 1% — g Co-author

al paper a2

1% —// — % Co-venue

venue

metapaths

Part | - Data Knowledge metapath2vec: Scalable Representation
Knowledge-enhanced Graph Learning Learning for Heterogeneous Networks



Path Sampling for Positions and Semantics

Sample a path of nodes for semantics, e.g., via metapaths

p1p2p3

o1 1[1]o0
Co-author p2|1|1]1 <: g — 1% — g Co-author

p3|0 | 1|1 al paper a2
p1p2p3
p1|1]1]0
Co-venue p2|1|1]0 <: 1% —//}\ — 1% Co-venue
p3|( 0|0 |1
p1 venue p2
Higher-order Semantics metapaths
Part | - Data Knowledge metapath2vec: Scalable Representation

Knowledge-enhanced Graph Learning Learning for Heterogeneous Networks



Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Data Knowledge Learning Strategies Regular GNN Learning Objectives
Extraction

Metapaths

Part | - Data Knowledge | Heterogeneous Graph Masked Autoencoders 39
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Data Knowledge Learning Strategies Regular GNN Learning Objectives
Extraction

________________

Semantics

H 1

S P py[1[tfol:
~ 1
pslo]o]1HP2P:

,’/ 171 E pvp:
: i Adjacency
Matrices

P1 (@00

==2 | Heterogeneous info

! Node !
O—0—O ' Attributes E
p | P1[:] i

= | p[esee ;:> Node Positions
p 1 P3(ecee] :
. Positional

Features

.
s vz

Metapaths

Part | - Data Knowledge | Heterogeneous Graph Masked Autoencoders 40
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Data Knowledge Learning Strategies Regular GNN Learning Objectives
Extraction Metapath Masking
P1 P2 P3 =
pil1]1]o [P:1
 ny[oTs lpg;;pgﬁg v O . Capture semantic knowledge
| Adjacency | 7| PR — 2.7,
Matrices | | Matrices Ps ;
D1 (e@@) i b oo '
zz g i Adaptive Attribute Masking
E AttN'c:)di E I\::;k o :
O—0—0 il = .
e Pl mEmR ) T N i Capture heterogeneous info and
O =0 . pesee) Vi A = | ”
P v v | omEm | | mE) @ ! node positions
""" ! Positional ! " @ S a T
Wictapaths I Features | | Masked P3
' i Attributes

Part | - Data Knowledge

_ Heterogeneous Graph Masked Autoencoders 41
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Data Knowledge Learning Strategies Regular GNN Learning Objectives

Extraction Metapath Masking
i P1 P2 Ps3 i
NAHEAE |
L opy[1[tfol:
' ps|o]of1 pl:;;)pi . k d
+  Adjacency i = A':'J/J!:zeicy @se ,
| MMathces Matrices Ps
| P1I[@88) | e
52 g i Adaptive Attribute Masking
' Node | | g Msk N R
: . : 1 Rate !

O—’M ! Attributes ! 1 — S @O0 :/ Encoder

Poa P o mEmD i P ~ Rl

OO0 = mEssn (™ ne? ANV

p v P | Di[eeee) | P2 (D) ]

""" ' Ppositional | . ol S T MLP

Metpaths | Features | | Masked Decoder

. ;o Awributes 5 N
Part | - Data Knowledge Heterogeneous Graph Masked Autoencoders 42
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Data Knowledge Learning Strategies Regular GNN Learning Objectives
Extraction Metapath Masking Metapath-based Edge
! Reconstruction (MER)
. ':1 ':2 (’:3 | Cmmeps PP Ps |
| 1 1 e : i .
' P2 ; (1) 2 p:api j (75 : LMER Zz 1 1 g :SemanthS
Ep3 : = Masked 2[alsl — > p, [0]o[1} !
. Adjacency | Tl g ceney =..
| Matrices | W s Target Attribute
| P1(@8@) ! temmemme e Restoration (TAR)
\  P(ese) Adaptive Attribute Masking e iy
L VoV e m " Hetero
: Attl\:ic:)duies ; E Bate ; GNN i Ps(ee8) ——» P:(ee0 ; Info
O=0r—=0 . : : —— .. @@ :/ Encoder FTTTTTTTTTTTToTmmomomomomoooeoes
p a p — A ACTOR ,:{>i poch = N\ AU Positional Feature
Ql%]{p) | 52@] - zl ’ A Prediction (PFP)
p \  DP3(eeee®) | v P2 ' Fmmmmmmmmsomm—osoeeosooeooy
""" . positional | | hed o3 MLP | DL o P (- |
Metapaths | Features | | Masked i S | 22@] Lppp Zz@: Positions
! L i | P ) —— Ps :
S A : N B e —
Part | - Data Knowledge Heterogeneous Graph Masked Autoencoders 43
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Performance Comparison: Node Classification

Datasets | Metric | Split | GraphSAGE GAE Mp2vec HERec HetGNN HAN DGI DMGI HeCo GraphMAE | HGMAE
20 71.444+8.7  91.55+0.1 89.67+0.1 90.24+0.4 90.11£1.0 90.16+0.9 88.72+2.6 90.78+0.3 91.97+£0.2 89.31+0.7 § 92.71+0.5

Mi-F1 | 40 73.61+8.6  90.00+0.3 89.14+0.2 90.15+0.4 89.03+0.7 89.474+09 89.22+0.5 89.92+04 90.76+0.3 87.80+0.5 § 92.43+0.3

60 74.05+8.3  90.95+0.2 91.17+0.1 91.01+0.3 90.434+0.6 90.344+0.8 90.35+0.8 90.66+0.5 91.59+0.2 89.82+0.4 f§ 93.05+0.3

20 71.97+8.4  90.90+0.1 88.98+0.2 89.57+0.4 89.51+1.1 89.31+0.9 87.93+24 89.94+04 91.28+0.2 87.94+0.7 § 92.28+0.5

DBLP | Ma-Fl1 | 40 73.69+8.4  89.60+0.3 88.68+0.2 89.73+0.4 88.61+0.8 88.87+1.0 88.62+0.6 89.25+0.4 90.34+0.3 86.85+0.7 § 92.12+0.3
60 73.86+8.1  90.084+0.2 90.25+0.1 90.18+0.3 89.56+0.5 89.204+0.8 89.19+0.9 89.46+0.6 90.64+0.3 88.07+0.6 § 92.33+0.3

20 90.59+4.3  98.154+0.1 97.69+0.0 98.21+0.2 97.96+0.4 98.07+0.6 96.99+14 97.75£0.3 98.32+0.1 92.23£3.0 § 98.90+0.1

AUC 40 91.42+4.0 97.85+0.1 97.08+£0.0 97.93+0.1 97.70+0.3 97.48+0.6 97.12+04 97.23£0.2 98.06+0.1 91.76%2.5 || 98.55+0.1

60 91.73+3.8  98.37+0.1 98.00+£0.0 98.49+0.1 97.974+0.2 97.96+0.5 97.76+0.5 97.72+0.4 98.59+0.1 91.63+2.5 J 98.89+0.1

20 54.83+3.0 55.204+0.7 56.23+0.8 57.92+0.5 56.85+0.9 57.24432 58.16+0.9 58.26+0.9 61.72+0.6 64.88+1.8 § 65.15+1.3

Mi-F1 | 40 57.08+3.2 56.05£2.0 61.01+1.3 62.71+0.7 53.96+1.1 63.74+2.7 57.82+0.8 54.28+1.6 64.03£0.7 62.34+1.0 § 67.23+0.8

60 55.92+43.2 53.85+04 58.74+0.8 58.57+0.5 56.84+0.7 61.06+2.0 57.96+0.7 56.69+1.2 63.61+1.6 59.48+6.2 § 67.44+1.2

20 45.14+4.5 53.81+0.6 53.96+0.7 55.784+0.5 52.72+1.0 53.16+2.8 54.90+0.7 55.79+£09 59.23+0.7 59.04+1.0 J 62.06+1.0

Freebase | Ma-F1 | 40 4488+4.1 5244423 57.80+1.1 59.28+0.6 48.57+0.5 59.63+23 53.40+14 49.88+1.9 61.19+:0.6 56.40+1.1 | 64.640.9
60 45.16+3.1  50.65+0.4 55.94+0.7 56.504+0.4 52.37+0.8 56.77+1.7 53.81+1.1 52.10£0.7 60.13+£1.3 51.73+2.3 | 63.84+1.0

20 67.63+5.0 73.03+0.7 71.78+0.7 73.89+0.4 70.844+0.7 73.26+2.1 72.80+0.6 73.19+1.2 76.22+0.8 72.60+0.2 j 78.36+1.1

AUC 40 66.42+4.7 74.05+£0.9 75.51+0.8 76.08+0.4 69.48+0.2 77.74+1.2 72.97+1.1 70.77£1.6 78.44+0.5 72.44+1.6 § 79.69+0.7

60 66.78+3.5 71.75+04 74.78+0.4 74.89+0.4 71.01+0.5 75.69+1.5 73.32+09 73.17+14 78.04+£04 70.66+1.6 § 79.11+1.3

+7.5%

Part | - Data Knowledge

_ Heterogeneous Graph Masked Autoencoders 44
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Performance Comparison: Node Clustering

Datasets DBLP Freebase ACM AMiner
Metrics NMI ARI NMI ARI NMI ARI NMI ARI
GraphSage | 51.50 3640 | 9.05 1049 | 29.20 27.72 | 15.74 10.10
GAE 72.59 77.31 | 19.03 14.10 | 2742 24.49 | 28.58 20.90
Mp2vec 73.55 77.70 | 1647 17.32 | 48.43 34.65 | 30.80 25.26
HERec 70.21 7399 | 19.76 19.36 | 47.54 35.67 | 27.82 20.16
HetGNN 69.79 75.34 | 12.25 15.01 | 41.53 34.81 | 21.46 26.60
DGI 59.23 61.85 | 18.34 11.29 | 51.73 41.16 | 22.06 15.93
DMGI 70.06 75.46 | 16.98 1691 | 51.66 46.64 | 19.24 20.09
GraphMAE | 65.86 69.75 | 19.43 20.05 | 47.03 4648 | 17.98 21.52
HeCo 74.51 80.17 | 20.38 20.98 | 56.87 56.94 | 32.26 28.64
HGMAE 76.92 82.34 | 22.05 22.84 | 66.68 71.51 | 41.10 38.27
+17% +25% +27% +33%

Part | - Data Knowledge
Knowledge-enhanced Graph Learning
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE

Ablation Study

Semantics Hetero Info Positions

Datasets Metric | w/o MER w/o TAR w/o PFP HGMAE
Mi-F1 | 76.85+0.2 | 88.54+0.4 | 89.814+0.5 | 90.59+0.5

ACM Ma-F1 | 71.93+0.4 | 88.82+0.4 | 89.944+0.4 | 90.80+0.5
AUC 84.84+1.5 | 96.47+0.1 | 97.224+0.1 | 97.69+0.1

e Removing the learning of each knowledge results in decreased performance

e By learning all knowledge, HGMAE achieves the best results

Part | - Data Knowledge
Knowledge-enhanced Graph Learning
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Path Sampling for Positions and Semantics

To encode the positions and semantics, introducing HGMAE
How valuable is knowledge?

—

w/o Knowledge w/ Knowledge
( GraphMAE ) ( HGMAE )
Part | - Data Knowledge Heterogeneous Graph Masked Autoencoders 47
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Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

 Node sampling for node positions

2) multiple-instance level perception
« Path sampling for positional and semantic information

@ « Subgraph sampling for community information

Part | - Data Knowledge 48
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Subgraph Sampling for Community Information
What is link prediction?

Predicting missing or future links between pairs of
nodes is important in social networks, recommender
systems, biological networks, and academic graphs

* Friend Recommendation
Product Recommendation
Protein-protein Interaction
Co-authorship Prediction

Part | - Data Knowledge

49
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Subgraph Sampling for Community Information

Heuristic methods for link prediction

Name Formula Order
common neighbors ||1; ((:1:)) 1rj(l';'(y)| first Pros:
xz)NL'(y
et o - + Easy calculation
preferential attachment  |I'(z)| - |T'(y)] first y u
Adamic-Adar Eze[‘(w)m[‘(y) m second o Interpretable
resource allocation > €I(2)NT(y) - second
z @ II'(2)] o L
Koty 5% Blualks® (z,4)|  high Not dependent on training
PageRank [72]y + [Ty high
. EaED(:c)ZbEP( )score(a,b) .
SimRank Y r@ITW) high
Part | - Data Knowledge 50

Knowledge-enhanced Graph Learning



Subgraph Sampling for Community Information

Heuristic methods for link prediction: Common Neighbor

I'(x) denotes the neighbor set of node x

x and y are likely to have a link if they
have many common neighbors

common neighbors (CN):
IFx)n I (y) |

Part | - Data Knowledge | Graph Neural Networks: Link Prediction 51
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Subgraph Sampling for Community Information

Heuristic methods for link prediction: Preferential Attachment

I'(x) denotes the neighbor set of node x

x is likely to connect to y if y has many

connections
preferential attachment (PA):
1T ()l
Part | - Data Knowledge Graph Neural Networks: Link Prediction 52
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Subgraph Sampling for Community Information

Heuristic methods for link prediction: Adamic-Adar

I'(x) denotes the neighbor set of node x

* Weighted common neighbors

« Popular common neighbors contribute

Adamic-Adar (AA): less
1
ZzEI‘(x)ﬂI‘(y) log |['(2)|

Part | - Data Knowledge | Graph Neural Networks: Link Prediction 53
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Subgraph Sampling for Community Information

Heuristic methods for link prediction: Problems

 Rule-based strategy, not learning-based

« Strong assumption on link formation mechanisms, which
might only work well on certain graphs

Part | - Data Knowledge | Graph Neural Networks: Link Prediction 54
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Subgraph Sampling for Community Information
Sample a subgraph to enhance link prediction: SEAL

Extract enclosing
subgraphs

Part | - Data Knowledge
Knowledge-enhanced Graph Learning

Graph neural network

common neighbors = 3
Jaccard = 0.6

preferential attachment = 16
Katz =~ 0.03

Learn graph structure features

common neighbors = 0
Jaccard =0

preferential attachment = 8
Katz = 0.001

—> 1 (link)

Predict links

= () (non-link)

Link Prediction Based on Graph Neural Networks 55



Subgraph Sampling for Community Information

Sample a subgraph to enhance link prediction: SEAL

Comparison with heuristic methods (AUC)

Data | CN Jaccard PA AA RA Katz PR SR ENS WLK WLNM SEAL

USAir | 93.80+£1.22 89.79+1.61 88.84+1.45 95.06£1.03 95.77+£0.92 92.88+1.42 94.67+1.08 78.89+2.31 88.96+1.44 96.63+0.73 95.95+1.10f 96.62+0.72
NS 94.42+0.95 94.43+0.93 68.65+2.03 94.45+093 94.45+093 94.85+1.10 94.89+1.08 94.79+£1.08 97.64+0.25 98.57+£0.51 98.61+0.49 | 98.85+0.47
PB 92.04+0.35 87.41£0.39 90.14+£0.45 92.36+0.34 92.46+0.37 92.92+0.35 93.54+0.41 77.08+£0.80 90.15+0.45 93.83+£0.59 93.49+0.47§ 94.721+0.46
Yeast | 89.37+£0.61 89.32+0.60 82.20+1.02 89.43+0.62 89.45+0.62 92.244+0.61 92.76+0.55 91.49+0.57 82.36+1.02 95.86+0.54 95.62+0.52§ 97.91+0.52
C.ele 85.13+£1.61 80.19+1.64 74.79+2.04 86.95+£1.40 87.49+1.41 86.34+1.89 90.32+1.49 77.07£2.00 74.94+2.04 89.72+1.67 86.18+1.72 ] 90.30+1.35
Power | 58.80+0.88 58.79+0.88 44.33+1.02 58.79+0.88 58.79+0.88 65.39+1.59 66.00+1.59 76.15+1.06 79.52+1.78 82.41+3.43 84.76+0.98§ 87.61+1.57
Router | 56.43+0.52 56.40+0.52 47.58+1.47 56.43+£0.51 56.43+0.51 38.62+1.35 38.76+1.39 37.40+£1.27 47.58+1.48 87.42+2.08 94.41+0.88 ) 96.38+1.45
E.coli | 93.71£0.39 81.31+£0.61 91.82+0.58 95.36+0.34 95.95+0.35 93.50+0.44 95.57+0.44 62.49+1.43 91.89+0.58 96.94+0.29 97.21+0.27§ 97.64+0.22

Part | - Data Knowledge
Knowledge-enhanced Graph Learning

SEAL outperforms heuristic methods

Link Prediction Based on Graph Neural Networks 56



Subgraph Sampling for Community Information
One step further: WalkPool

SEAL average the node embedding in subgraph for link prediction

WalkPool proposes that average pooling is suboptimal. Instead, using
random walk to extract structural information

0 1/3 1/3 1/3)
1/2 0 1/2 0
1/3 1/3 0 1/3
/2 0 1/2 0 )

P =

Random walk probabilities

Part | - Data Knowledge

| Neural Link Prediction with Walk Pooling 57
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f== D
Subgraph Sampling for Community Information

S

One step further: WalkPool e

Features T =2 walk length

1 1 N 1 1 N 1 1
nodej 3 9 3 2 3 3
Use these

> random walk
link] o (l : 1) — features for link

3 2 prediction via
O-G0-@ an MLP
graph’ node% + node% + node% + nodei
Part | - Data Knowledge Neural Link Prediction with Walk Pooling 58
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Graph Learning Enhanced by Knowledge from Data

Chapter summary

Knowledge can be obtained from [ bata J

1) single-instance level perception l LL!Q;\A

 Node sampling for node positions

2) multiple-instance level perception

« Path sampling for positional and semantic information

« Subgraph sampling for community information

Part | - Data Knowledge 59
Knowledge-enhanced Graph Learning



Tutorial Outline

Preliminaries and Foundations

Graph Learning Enhanced by Knowledge from Data

Graph Learning Enhanced by Knowledge from Models

Graph Learning Enhanced by Knowledge from Humans and Domains

Graph Learning Enhanced by Knowledge from External Sources

Knowledge-enhanced Graph Learning for Real-world Applications

Summary and Future Directions -



Models Contain Rich Knowledge

What is knowledge in models?

p1 p2 p3
o1 11317
il 02 e Probability
B p3 [ .7 2 1 Categories
Learned Embeddings Data Similarity Logits

Why we need to emphasize model knowledge?

Two goals: « Model Compression « Performance Improvement

Part Il - Model Knowledge 61
Knowledge-enhanced Graph Learning



Models Contain Rich Knowledge

Deep GNNs are expensive

L e The more layers,
@ 75 the higher performance,
E s '
o the more expensive
1 2 #layer ’ ’ 1 2 #layer 3 4

Micro-f1 of GAT on Facebook Time cost of GAT on Facebook

Part Il - Model Knowledge

Knowledge Distillation and Student-Teacher Learning
Knowledge-enhanced Graph Learning

2
for Visual Intelligence: A Review and New Outlooks ©



Models Contain Rich Knowledge

How can we emphasize model knowledge?

Distilling knowledge from models!

“Data | —> [Model] (Teacher)
| ot
(student) [ Model| ——> [ task |

Knowledge-enhanced Graph Learning



A Systematic Framework

Bases

Th ree Main AS peCtS: Challenges, Preliminaries, Problem, Objectives
& . &

Methods and Applications

What to Distill Who to Whom How to Distill
Logits Teacher-free Direct
1ot Embeddings | | oosnaassasasas Adaptive
o
What to DIStI” Structures 'T_efih_e_f'_tg_siu_d_e_"i' Customized
e |
|
o« Who to Whom | GNN — GNN |
l Multlple KGEM Online KGEM |
' |
. g |
° HOW to D|St|” i Number of Teacher Distillation Student |
: Teachers Structures Schemes Structures :

Applications: various tasks on graph, language, and image data.

@ Future Research Directions @
Explainability, Transferability, Theory, Applicability, etc.

Part Il - Model Knowledge | Knowledge Distillation on Graphs: A Survey 64
Knowledge-enhanced Graph Learning



A Systematic Framework
What to distill?

Probability | I Logits denote the inputs to the final SoftMax function
and represent the soft label prediction

Categories

S Embeddings are learned node embeddings from the
=k intermediate layers of teacher models

1317 . . . .
--.3.-;--1.-4-.2.- Structures depict the connectivity and relationships
between the elements in graph

g0 .20 1

Part |l - Model Knowledge Knowledge Distillation on Graphs: A Survey 65
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A Systematic Framework

Who to whom?

4 )

Who to Whom _w Teacher-free: model can learn knowledge from itself
Teacher-free =~

:_Teacher-to-Student |
P ~
7~ ~
_______ I
| |/v Teacher/Student Structures:
| [ i ] + { Gl ] 2 [ Offline ] 2 { e ] l « Graph Neural Networks
| WU S0 ol KGEM |  Knowledge Graph Embedding Methods
: Number of Teacher Distillation Student | ° Mu|ti_|ayer Perceptron
| Teachers Structures Schemes Structures |

Offline: teacher model is pre-trained and only student model is updated
Online: both the teacher model and the student model are trained end-to-end

Part Il - Model Knowledge | Knowledge Distillation on Graphs: A Survey 66
Knowledge-enhanced Graph Learning



A Systematic Framework

How to distill?

.....

Q Q Direct distillation minimizes the divergences between the
knowledge of the teacher and the student directly

Adaptive distillation considers the significance of teacher

)
ﬁ'.s e'% knowledge adaptively
—

Q Customized distillation enables diversified designs according to
the distinct objective of tasks in different scenarios

Part Il - Model Knowledge | Knowledge Distillation on Graphs: A Survey 67
Knowledge-enhanced Graph Learning



A Systematic Framework

A list of representative methods

Method Objective What to Distillate Who to Whom How to Distillate Venue

TinyGNN[!! Compression Logits GNN = GNN Direct KDD’20
LSp[ Compression Structures GNN = GNN Direct CVPR’20

RDD/?! Performance Logits, Embs Teacher-free Adaptive SIGMOD’20
RODM Performance | Logits; Structures | Multi. GNNs <= GNN Adaptive KDD’21

EEEEEE

GKD!?] Compression Structures GNN = GNN Direct NeurIPS’22
SAILPY Performance Embs GNN = GNN Direct AAAT22
LTE4G/?2 Performance Logits Multi. GNNs = GNN Direct CIKM’22
T2-GNNI?¥l | Performance | Logits; Embs Multi. GNNs => GNN Direct AAAT'23
RELIANT[?4 | Compression Logits GNN = GNN Direct SDM’23
BGNNI2%] Performance Logits Multi. GNNs = GNN Adaptive AAAT23
NOSMOG!?% | Compression | Logits; Structures GNN = MLP Direct ICLR’23

Part Il - Model Knowledge

Knowledge-enhanced Graph Learning

Knowledge Distillation on Graphs: A Survey 68



Covered Topics for Knowledge from Models

How to obtain knowledge from

1) Logits
2) Embeddings

3) Structures

A recent learning strategy

4) Distilling an MLP to replace GNNs

Part Il - Model Knowledge 69
Knowledge-enhanced Graph Learning



Covered Topics for Knowledge from Models

How to obtain knowledge from

@ 1) Logits

2) Embeddings

3) Structures

A recent learning strategy

4) Distilling an MLP to replace GNNs

Part Il - Model Knowledge 70
Knowledge-enhanced Graph Learning



Knowledge Distillation from Logits

lllustration

Teacher network T

Pre-trained

]‘ ‘]iim prediciions

....................... " DIStllIat|On |OSS

......................... ;

predictions

Student network S True label

Part Il - Model Knowledge
Knowledge-enhanced Graph Learning

Learning a smaller student
network by mimicking the
predictions of the teacher

Knowledge Distillation and Student-Teacher Learning 71
for Visual Intelligence: A Review and New Outlooks



Knowledge Distillation from Logits

Learn a small GNN with local structure enhanced: TinyGNN

; 7
9 GNN Layer
COMBINATION 9 e e
|GNN Layerl |GNN Layer| |GNN Layer| /'T '
AGGREGATION PAM
boébs B b b 6
(b) 2-layer GNN (c) GNN Layer (d) 1-layer GNN with PAM

Peer-Aware Module
captures the local structure

Part Il - Model Knowledge | TinyGNN: Learning Efficient Graph Neural Networks 72
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Knowledge Distillation from Logits

Learn a small GNN with local structure enhanced: TinyGNN

Sampling
: i
| |
[
|
Graph @ ! |
|
|
(® Target representation node ® ® O : |
| |
| |

Student GNN
_______________________ | I I

Loss Function

 Nodes 3, 4, 5 are peer nodes to each other
« Calculate attention between peer nodes to encode local structure

Part Il - Model Knowledge | TinyGNN: Learning Efficient Graph Neural Networks 73
Knowledge-enhanced Graph Learning



Knowledge Distillation from Logits

Learn a small GNN with local structure enhanced: TinyGNN

Graph

(® Target representation node

Student GNN

Loss Function

Learning knowledge from teacher logits and ground truth labels

Part Il - Model Knowledge | TinyGNN: Learning Efficient Graph Neural Networks 74
Knowledge-enhanced Graph Learning



Knowledge Distillation from Logits

Learn a small GNN with local structure enhanced: TinyGNN

Facebook Chameleon Squirrel AliGraph
Micro-f1(%) | Macro-f1(%) | Micro-f1(%) | Macro-f1(%) | Micro-f1(%) | Macro-f1(%) | Micro-f1(%) | Macro-f1(%

* 1 layer TinyGNN performs poorly
« 2 layers TinyGNN can outperform the 3 layers GNN teacher

Part Il - Model Knowledge | TinyGNN: Learning Efficient Graph Neural Networks 75
Knowledge-enhanced Graph Learning



Knowledge Distillation from Logits

Different GNNs learn different knowledge

o
©
IN

0.7 0.7
v 3 0.6 n 3 0.8 E 0.6
(O] v (O]
> i > I 0.5
S 5 0.5 S 5 0.7 EZ .
5 0.4 5 0.6 5 '
O1 O1 O1 0.3
0.3 0.5
1 2 3 4 1 2 3 4 1 2 3 4
GAT Layers GraphSage Layers GraphSage Layers
« GCN aggregates neighborhoods with predefined weights
« GAT aggregates neighborhoods using learnable weights
« GraphSage randomly samples neighbors during aggregation
Part Il - Model Knowledge Boosting Graph Neural Networks via

Knowledge-enhanced Graph Learning Adaptive Knowledge Distillation

76



Knowledge Distillation from Logits
Learn a GNN from multiple GNNs: BGNN

—> GNN,; <—| Labels . g . .
~F % - Distill several times, once a different GNN
Stepp :
| %—) eNN,, < was |1+ Weighted Labels encourage student to
o  — | learn adaptively, by focusing more on the
%%f . Weighted ! misclassified samples
o = ! Labels Labels :

Weight Weighted
______________i __________ I Boosting > Tl Labels
* GNN, is different from any GNN, (q<p)
Part Il - Model Knowledge Boosting Graph Neural Networks via 77
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Knowledge Distillation from Logits
Learn a GNN from multiple GNNs: BGNN

Graph Classification Node Classification
Student ] Method COLLAB IMDB ENZYMES ] CoORrA CITESEER PUBMED A-COMPUTERS
BAN (Furlanello et al. 2018) 81.60+0.40 78.50+1.00 66.67+1.67 | 83.17+0.26 72.474+0.21 79.87+0.21 88.78+0.05
MulDE (Wang et al. 2021) 80.86+1.18 77.50+1.20 67.33+0.90 | 82.53+0.05 72.334+0.09 78.73+0.09 88.41+0.12
GCN BGNN(s 82.73+0.34  79.334+0.47 69.44+0.79 | 83.97+0.17 73.8740.24 80.73+0.25 89.58+0.03
BGNN(m)-ST 82.87+0.09 79.671+0.27 71.12+2.45 | 84.83+0.25 73.60+0.14 80.20+0.08 89.03+0.02
BGNN(m)-TS 83.40+0.15 79.00+0.00 70.00+1.36 | 84.40+0.22 74.87+0.25 80.90+0.00 89.02+0.03

BGNN outperforms existing methods on multi-teacher KD

Part Il - Model Knowledge
Knowledge-enhanced Graph Learning

Boosting Graph Neural Networks via

/8
Adaptive Knowledge Distillation



Covered Topics for Knowledge from Models

How to obtain knowledge from
1) Logits

@ 2) Embeddings
3) Structures

A recent learning strategy

4) distilling an MLP to replace GNNs

Part Il - Model Knowledge 79
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Knowledge Distillation from Embeddings

lllustration

 Beyond learning teacher’s
ogits, the student should also
earn teacher’'s embeddings

Graph - * Logits contain inter-class
correlations
 Embeddings contain inter-
node correlations
Part Il - Model Knowledge Knowledge Distillation and Student-Teacher Learning 80

Knowledge-enhanced Graph Learning for Visual Intelligence: A Review and New Outlooks



Knowledge Distillation from Embeddings
Enable the student to learn embeddings: GraphAKD

'/
5 O ol  GNN Generator:
' Classifier: . .
\i L .:DE-:I E Teacher LogitsZT prOduce Slmllar
g g | embeddings and
( Discriminator 1 ‘: .
i Representation Identifier D, Logit Identifier D, | 1 Iog ItS
Student GNN, i Y } . . .
______ also the generator G _ [ ~— « Discriminator:
- / > ™= %%‘E distinguish the

output of teacher
and student

T
ﬁ .
| Classifier

[l W

.

B0 o ;
Student Representations HS ./  Student Logits Z°

N
________________________________________________________________

Compressing Deep Graph Neural Networks

Part Il - Model Knowledge _ . Cuand
via Adversarial Knowledge Distillation

Knowledge-enhanced Graph Learning



Knowledge Distillation from Embeddings
Enable the student to learn embeddings: GraphAKD

Teacher Vanilla Student Student trained with GraphAKD
Datasets =~ Model #Params Model R. Perf. Perf. #Params | Perf. Impv. (%) #Params Decr.
Cora GCNII 616,519 GCN 78.3 £0.9 83.6 £0.8 96,633 2.1 84.3%
CiteSeer GCNII 5,144,070 GCN 68.6 £1.1 72.9 £0.4 1,016.156 1.8 80.2%
PubMed GCNII 1,177,603 GCN 78.1 £1.0 81.3+0.4 195,357 2.3 83.4%
Flickr GCNII 1,182,727 GCN 49.63 £1.19 [ 52.95 +£0.24 § 196,473 3.32 83.4%
Arxiv GCNII 2,148,648 GCN 71.43 £0.13 § 73.05 £0.22 § 242,426 1.31 88.7%
Reddit GCNII 691,241 GCN 94.12 £0.04 J 95.15 £0.02 § 234,655 1.03 66.1%
Yelp GCNII 2,306,660 Cluster-GCN 59.63 £0.51 § 60.63 £0.42 § 431,950 1.00 81.3%
Products GAMLP 3,335,831 Cluster-GCN 74.99 £0.76 § 81.45+0.47 § 632,449 5.24 79.5%

« Better performance than vanilla student, but perform poorly than the teacher
« Smaller model size (parameters decreased by ~80%)

Part Il - Model Knowledge Compressing Deep Graph Neural Networks
Knowledge-enhanced Graph Learning via Adversarial Knowledge Distillation



Knowledge Distillation from Embeddings
Enable the student to learn embeddings: GraphAKD

#Params GPU Memory Inference time

Datasets Teacher Student |Teacher Student] | Teacher Student

Cora 0.6M 0.1IM 0.22G 0.03G 40.3ms 4.1ms
PubMed 1.2M 0.2M 1.23G 0.33G 57.3ms 5.7ms
Flickr 1.2M 0.2M 2.79G 1.49G 309.7ms 11.9ms
Yelp 2.3M 0.4M 6.28G 4.73G 3.0s 1.5s

Products 3.3M 0.7M 6.25G 6.20G 16.1s 7.0s

Reduced GPU memory; Faster inference time

Part Il - Model Knowledge Compressing Deep Graph Neural Networks
Knowledge-enhanced Graph Learning via Adversarial Knowledge Distillation



Knowledge Distillation from Embeddings
Enable the student to learn embeddings: GraphAKD

Ablation studies on the learning impacts

Datasets Cora PubMed Flickr Yelp Products Molhiv

Teacher 85.5 30.3 56.20  65.14 84.59 84.03

Embeddings : : : : : :
Logits Only D, 82.3 81.0 52.52  60.03 79.76 78.09
GraphAKD 83.6 81.3 5295 60.63 81.45 79.16

« Learning from embeddings is beneficial
« Combining the learning from embeddings and logits is even better

Part Il - Model Knowledge Compressing Deep Graph Neural Networks
Knowledge-enhanced Graph Learning via Adversarial Knowledge Distillation



Covered Topics for Knowledge from Models

How to obtain knowledge from

1) Logits
2) Embeddings

(5=¢ 3)Structures

A recent learning strategy

4) distilling an MLP to replace GNNs

Part Il - Model Knowledge 85
Knowledge-enhanced Graph Learning



Knowledge Distillation from Structures

L]
I

lllustration
Structural
] Knowledge
]
3 [Eb = g
1}
]

Teacher

Part Il - Model Knowledge
Knowledge-enhanced Graph Learning

Student

The student should also learn
graph structural and topology
information from the teacher

Knowledge Distillation and Student-Teacher Learning
for Visual Intelligence: A Review and New Outlooks



Knowledge Distillation from Structures

Enable the student to capture the local structure: LSP

Teacher

’

GCN_L|, = = Ll >+ o
\ :
. _
O Local structure Local structure Soften E

® preserving preserving Labels

o =
Q . :_
’ =
» 1st step: compute the distribution of the local structure for each node
(denoted by node similarity to each other)
« 2nd step: match the distributions of the teacher with that of the student
Part Il - Model Knowledge Distilling Knowledge from

Knowledge-enhanced Graph Learning Graph Convolutional Networks



Knowledge Distillation from Structures

Enable the student to capture the local structure: LSP

Model | Layers Attention heads Hidden features
- Teacher 3 4,4.6 256,256,121
Model details: GAT g ent | s 2,2,2,2,2 68,68,68,68,121
Model Params RunTime Training | F1 Score
Teacher 3.64M 48.5ms  1.7s/3.4G
Student_Full 0.16M 41.3ms 1.35/1.2G 95.7

T Student_KD [14] - - - ;
Node classification on PPl gugent AT[47] | 0.16M  413ms 19s/14G | 954
Student_FitNet [31] | 0.16M 41.3ms 2.4s/1.6G 95.6

Student LSP (Ours) 413ms  2.05/1.5G

Reduced parameters; Comparable F1 to the teacher

Part Il - Model Knowledge Distilling Knowledge from
Knowledge-enhanced Graph Learning Graph Convolutional Networks



Knowledge Distillation from Structures

The strategy of LSP
Teacher 3 o 1 Preserved
0o 2-0 : 2-0
2-1 : 21
- 5 0 B - 23
2-4 : 2-4
Student - Not Preserved
3-4 : 34
1-3 : 1-3
4-0 : 4-0

—+=| Congruent edge relations

Part Il - Model Knowledge
Knowledge-enhanced Graph Learning

Considering pairwise relationships,
but not considering latent interactions
among disconnected nodes.

On Representation Knowledge
Distillation for Graph Neural Networks



Knowledge Distillation from Structures

One step further: enhance the student with global structure

Student

Teacher 3 1 Preserved
(2 2-0 : 2-0

2-1 : 2-1

: ! 2-3 : 2-3

— |Edge relations

Part Il - Model Knowledge

Knowledge-enhanced Graph Learning

2-4 . 2-4

. o 3-4 : 3-4
o 1-3 : 1-3

4 4-0 : 4-0

Latent relations

* Global Structure Preserving (GSP):
consider all possible pairwise
similarities among node features

« Challenging to optimize/scale up due
to an explosion of possible pairs

On Representation Knowledge
Distillation for Graph Neural Networks



Knowledge Distillation from Structures
Enhance the student with implicit global structure: G-CRD

Teache/ / | earnt Positive Pairs

@ Proj. Head g i g : ; ; » » Use contrastive learning to capture

2 U ~—i : implicit global topology
PR Y., . o " . .
B 4 ED S B I\(l)e_gftl\zlesPirs Positive pair: same node embeddings
—S e of the teacher and the student
Student/ SFS 7 = 2 2.0,1,3,4 -
@ ®@ 3-0,1,2,4 * Negative pair: random nodes
Attract | <> | Repel 4-0,1,2,3

Part Il - Model Knowledge On Representation Knowledge
Knowledge-enhanced Graph Learning Distillation for Graph Neural Networks



Knowledge Distillation from Structures
Enhance the student with implicit global structure: G-CRD

Molecular graph classification on MOLHIV

Teacher (#Layer,#Param): GIN-E (5L,3.3M) PNA (5L,24M) GIN-E (5L,3.3M) PNA (5L,2.4M) PNA (5L,2.4M)
Student (#Layer,#Param): GCN (2L,15K) GCN (2L,15K) GCN (2L,40K) GCN (2L, 40K)  GIN (2L,10K)

a. Supervised Teacher 77.69 £1.61 77.48 £1.71 77.69 £1.61 77.48 £1.71 77.48 £1.71
&  Supervised Student 73.02 +1.46 73.02 +1.46 73.65 +1.50 73.65 +1.50 73.03 £2.02
KD [30] 74.08 +1.03 74.13 +£1.72 75.25 +1.71 74.45 +1.27 73.42 +2.14
FltNet [47] 73. 62 il 05 () 73 65 +1 25 () 7452 :l:l 33 () 7439+1.46() 72.88£0.89()
RO 0 Q Q

LSP [32] 73. 58 :l:l 29 () 73 24 +1. 67 () 75.04 :l:1.20 () 74.3 +1.58 (1) 70.4 :|:1.8 @)

GSP 72.83 £1.30()) 73.74+£093 () 75.12+£1.27() 75.09 +148 (") 69.68 £2.88 ()
G-CRD (Ours) 74.34 £1.44 (1) 7511 £0.73 (1) 7553 £1.64 ()  75.89 £0.80 () 75.77 £2.02 (1)

Distillation

LSP performs poorly: preserving local structure is not sufficient
GSP performs poorly: preserving every possible pair of nodes contributes less
G-CRD performs well: preserving the implicit global structure is beneficial

Part Il - Model Knowledge On Representation Knowledge
Knowledge-enhanced Graph Learning Distillation for Graph Neural Networks



Covered Topics for Knowledge from Models

How to obtain knowledge from

1) Logits
2) Embeddings

3) Structures

A recent learning strategy

@ 4) distilling an MLP to replace GNNs

Part Il - Model Knowledge 93
Knowledge-enhanced Graph Learning



Distilling an MLP to Replace GNNs
The majority of KD on Graphs focus on GNN to GNN

# Nodes Fetched Inference Time (ms)
8eb: 7655570 4.0e4;
7e6 3.5e4 33006.4
6€61 3.0e4]
5e61 GraphSAGE 2.5e4 GraphSAGE
4e6; 2.0e4
3e6] 1.5e4;
2€e6] 964350 1.0e4
le6 0.5e4
0e6-5§9 65§00 | | O.Oe4‘-!9%31 1017.81 |
1 2 3 4 1 2 3 4
# Layers # Layers

Inherent limitation: Dependence on message passing architecture,
which is time-consuming and computation-intensive, making the
model inapplicable to time-sensitive situations

Part Il - Model Knowledge Graph-less Neural Networks: Teaching
Knowledge-enhanced Graph Learning Old MLPs New Tricks via Distillation



Distilling an MLP to Replace GNNs

To avoid the troublesome message passing

# Nodes Fetched Inference Time (ms)
[ GNN J 8e6- 7655570  4.0ed -
7e6; 3.5e4 33006.4
' 6e6 | 3.0e4
X A 56 GraphSAGE 2.5e4] GraphSAGE
Ll!;ll 4e6 2.0e4;
3e6 1.5e4
2e06 1.0e4
1le6] MLP  0.5e4] MLP
[ MLP J 0e6 %10 — 10 PR it 1.84 2.34
1 2 3 4 1 2 3 4
# Layers # Layers

Distilling knowledge to an MLP (Multi-layer Perceptron),
which is simple and does not require message passing

Part Il - Model Knowledge Graph-less Neural Networks: Teaching 5
Knowledge-enhanced Graph Learning Old MLPs New Tricks via Distillation



Distilling an MLP to Replace GNNs
Distilling knowledge to an MLP: GLNN

Offline Training with Distillation

OnIbe

Features

)
Trained

GNN
Teacher

O

m—)

OH o =

O O

%>

“" Online Prediction on New Nodes

Soft Targets New node/edgesin
SR dashed lines=*****
R

Distilled
Knowledge
MLP
Student

h o4

~
Seee

Part Il - Model Knowledge

Knowledge-enhanced Graph Learning

No dependency on
graph in grey

~~
~,
Ss

)
Deployed
GLNN

-
-

Graph-less Neural Networks: Teaching

Old MLPs New Tricks via Distillation
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Distilling an MLP to Replace GNNs

Distilling knowledge to an MLP: GLNN

Datasets SAGE MLP GLNN ArvLp AcNN
Cora 80.52 +1.77 59.22+131 80.54+1.35 21.32(36.00%) | 0.02 (0.02%)
Citeseer 7033 +197 59.61 £2.88 71.77 £2.01 12.16(20.40%) | 1.44 (2.05%)
Pubmed 7539 +2.09 67.55+231 7542+231 7.87(11.65%) 0.03 (0.04%)
A-computer 8297+2.16 6780+ 1.06 83.03+1.87 15.23(22.46%) | 0.06 (0.07%)
A-photo 90.90 £0.84 78.77+1.74 9211 +1.08 13.34(16.94%) | 1.21 (1.33%
Arxiv 7092 +0.17 56.05+ 046 63.46+0.45 7.41(13.24%) -7.46 (-10.52%)
Products 78.61 =049 6247 +0.10 68.86+0.46 6.39(10.23%) -9.75 (-12.4%)

Part Il - Model Knowledge

GLNN performs well on small datasets,
but performs poorly on large datasets

Knowledge-enhanced Graph Learning

Graph-less Neural Networks: Teaching
Old MLPs New Tricks via Distillation
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Distilling an MLP to Replace GNNs
Problems of simply distilling knowledge to an MLP

. T
. T
T

ne misalignment between content feature and label spaces
ne strict hard matching to teacher’s output

ne sensitivity to node feature noises

Therefore, a question can be asked:

Can we learn MLPs that are graph structure-aware in both the feature
and representation spaces, insensitive to node feature noises, and
have superior performance as well as fast inference speed?

Part Il - Model Knowledge Learning MLPs on Graphs: A Unified View of 98
Knowledge-enhanced Graph Learning Effectiveness, Robustness, and Efficiency



Distilling an MLP to Replace GNNs
Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

GNN Teacher

1 o Distill Knowledge of Logits

Graph 0.2 0.3 05
0.1 0.7 0.2
0.6 0.1 0.3
0.3 04 03

ﬁ%p ful Soft Label
Node Content\

Features

Distillation

MLP
Student

Part Il - Model Knowledge Learning MLPs on Graphs: A Unified View of
Knowledge-enhanced Graph Learning Effectiveness, Robustness, and Efficiency
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Distilling an MLP to Replace GNNs
Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

GNN Teacher

l

0.2 03 0.5
0.1 0.7 0.2
0.6 0.1 0.3
0.3 04 0.3

Soft Label
Distillation

Representational
Similarity Distillation

Node Content\

Features

MLP
Student

Part Il - Model Knowledge
Knowledge-enhanced Graph Learning

o Distill Knowledge of Logits

o Distill Knowledge of Learned
Embedding and Structure

—) ‘&
Squared o
< > ED:
Error
GNN Node MLP Node
Similarity Similarity

Learning MLPs on Graphs: A Unified View of 100
Effectiveness, Robustness, and Efficiency



Distilling an MLP to Replace GNNs
Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

GNN Teacher

1 o Distill Knowledge of Logits

o Distill Knowledge of Learned
0.2 0.3 05

Rep\kesentational 0.1 0.7 0.2 Embedding and Structure
Similarity Distillation [0.6 0.1 0.3 _
<] Concatenate X 03 0493] o Learning Knowledge of Node
' = Soft Label Positions from Data
Distillation

Node Content\ ﬁ%_l‘l
Features / > I

Node Position MLP
Features Student
Part Il - Model Knowledge Learning MLPs on Graphs: A Unified View of 101
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Distilling an MLP to Replace GNNs
Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

GNN Teacher

1 o Distill Knowledge of Logits

o Distill Knowledge of Learned
0.2 0.3 05

Rep\kesentational 0.1 0.7 0.2 Embedding and Structure
Similarity Distillation 0.6 0.1 0.3 _
<] Concatenate X 03 04 03] o Learning Knowledge of Node
’ - A Soft Label 1
Node Content\ hnuelg ; e Positions from Data
Features e : ] « Enhance Knowledge Acquisition
i T with Augmentation
Node Position Adversarial Feature  MLP
Features Augmentation Student
Part Il - Model Knowledge Learning MLPs on Graphs: A Unified View of 102
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Distilling an MLP to Replace GNNs

Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

Datasets SAGE MLP GLNN NOSMOG AaNN AyLp AcLNN
Cora 80.64 =1.57 59.18£1.60 80.26+1.66 | 83.04 £1.26 | 12.98% 140.32% 1 3.46%
Citeseer 7049 £1.53 5850+1.86 71.22+1.50 | 73.78 =154 14.67% 126.12% 1 3.59%
Pubmed 75.56 £2.06 68394+3.09 7559+246 | 7734 +236) 1236% 1T13.09% 12.32%
A-computer 82.82+137 6762+221 82.71+1.18 | 8404 +£1.01] 1147% 12428% 11.61%
A-photo 90.85+£0.87 77294+1.79 9195+1.04 | 93.36 :-0.69 | 12.76% 120.79% 1 1.53%
Arxiv 7073 £0.35 55.67+024 63.75+£048 | 71.65+0.29 ) 11.30% 128.70% 71 12.39%
Products 77.17 2032 60.02 £0.10 63.71 :0.31 | 7845 038 11.66% 130.71% 123.14%
+2.46% +26.29% +6.86%

NOSMOG achieves the best performance

Part Il - Model Knowledge
Knowledge-enhanced Graph Learning

Learning MLPs on Graphs: A Unified View of 103
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Distilling an MLP to Replace GNNs
Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

NOSMOG is 833x faster than GNNs NOSMOG is as robust as GNNs

80-. = 80 - —e—MLP —#—GNN
NOSMOG “SAGE-LZSAGE'L‘D’ - —4—GLNN —=—NOSMOG
Lo 5 “GLNNwS
o GLNNw4 > 60
© 70+ C
= = 50
@) O
Q O
< 65~ = <C 40 A
A
GLNN SAGE-L1
30 1
601®
MLPs 20 -
10} 107 10° 104 0O 02 04 06 08 1
Log Scale Inference Time (ms) Noise Level a
Part Il - Model Knowledge Learning MLPs on Graphs: A Unified View of 104
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Graph Learning Enhanced by Knowledge from Models ‘=’

Chapter summary

How to obtain knowledge from
{Model} (Teacher)

1) Logits
2) Embeddings l L’!!A\
3) Structures
A recent learning strategy [ModelJ (Student)

4) distilling an MLP to replace GNNs

Part Il - Model Knowledge 105
Knowledge-enhanced Graph Learning



Tutorial Outline

Preliminaries and Foundations

Graph Learning Enhanced by Knowledge from Data

Graph Learning Enhanced by Knowledge from Models

Graph Learning Enhanced by Knowledge from Humans and Domains

Graph Learning Enhanced by Knowledge from External Sources

Knowledge-enhanced Graph Learning for Real-world Applications

Summary and Future Directions 106



Topics for Knowledge from Humans and Domains ‘=

Graph learning enhanced by human feedback

« Graph active learning with human knowledge

Graph learning enhanced by domain knowledge

« Chemistry domain knowledge for molecular property prediction

Part lll - Human Knowledge 107
Knowledge-enhanced Graph Learning



Topics for Knowledge from Humans and Domains =~

Graph learning enhanced by human feedback

@ « Graph active learning with human knowledge

Graph learning enhanced by domain knowledge

« Chemistry domain knowledge for molecular property prediction

Part lll - Human Knowledge 108
Knowledge-enhanced Graph Learning



Graph Active Learning

What is graph active learning?

Chooses graph data examples
to label from a large pool of
unlabeled data repeatedly:.

 training a model on the small
pool of labeled graph data

« selecting graph data
examples to label based on
different query heuristics

Part Ill - Human Knowledge
Knowledge-enhanced Graph Learning

APPEND TRAIN

Add newly labeled
examples to training data

Train N models
on labeled training data

Active Learning
Loop

ANNOTATE QUERY

Human experts annotate
selected examples

Use acquisition function to
select examples from
unlabeled data

109



Graph Active Learning

Why do we need graph active learning?

* Incorporating human
knowledge

* Reduce the annotation cost
by focusing on the most
relevant graph data examples

Part Ill - Human Knowledge
Knowledge-enhanced Graph Learning

APPEND TRAIN

Train N models
on labeled training data

Add newly labeled
examples to training data

Active Learning
Loop

ANNOTATE QUERY

Use acquisition function to
select examples from
unlabeled data

Human experts annotate
selected examples

110



Graph Active Learning

Incorporating accurate human knowledge: ALG

Query
L 05 | 03 | 02 ] » Accurate human
Ground truth label
Model Prediction knowledge
Which category does it Oracle
exactly belong to ?

In this setting, ground truth labels that are one-hot encoding
serve as accurate human knowledge

Part Ill - Human Knowledge ALG: Fast and Accurate Active Learning
Knowledge-enhanced Graph Learning Framework for Graph Convolutional Networks
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Graph Active Learning

Incorporating accurate human knowledge: ALG

Labeling a batch of unlabeled nodes

Cluster
Data
7 Y /
Unlabeled Set Informativeness
———] (Cost-effective)
Updat epresentativeness
L (Model-free)

.
Labeled Set

oRy

ERF-aware Node .
Selection Component @

« An adaptive measurement component that computes the node importance, and a selection
component to choose a set of nodes to label given their importance

« Measurement component: K-means-based. Center nodes in clusters are more representative
» Selection component: the model should select nodes from each cluster for fairness

’ Reception Field

K Adaptive Measurement Component

Part lll - Human Knowledge

ALG: Fast and Accurate Active Learning
Knowledge-enhanced Graph Learning

112
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Graph Active Learning

Incorporating accurate human knowledge: ALG

Citeseer PubMed
= — TS | — — . [ St R R N
b — ‘:.-E/::/"'—'L—_i °\° 70 s 2 - . X 80 S _—__;
. —/‘_H———t ~ i - — E ~ a—h—k Aqﬁ)ﬂ"’-&
T ~ 65 1 __W o s e
—— ANRMAB S 601 A —— ANRMAB < ; e = —— ANRMAB
4~ AGE 5 N 4~ AGE 570 & o s+ AGE
+— Random 8 351 /ﬂ‘y.g +— Random S 65 _ ‘/‘-"‘/ —&— Random
—— ALG(GCN) < 591 P —— ALG(GCN) < 60 /’“/‘" —— ALG(GCN)
—*—  ALG(MLP) % 451 —+—  ALG(MLP) % —+—  ALG(MLP)
""" Full data = 401 ======_ Full data 22 == Full data
20 40 60 80 100 120 140 20 40 60 80 100 120 10 20 30 40 50 60
Number of nodes in labeled set Number of nodes in labeled set Number of nodes in labeled set

« When labeling more nodes, ALG quickly boosts its accuracy at the beginning
and consistently outperforms the baselines

 ALG only needs to label about 5% of all the nodes in Cora to achieve the
accuracy of 83.5%, which is comparable to the performance trained on the

full dataset (a gap <3%)

ALG: Fast and Accurate Active Learning 113

Part lll - Human Knowledge
Framework for Graph Convolutional Networks
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Graph Active Learning

Problem of using accurate human knowledge

Query
ErEETEETE > Accurate human
Ground truth label
Model Prediction knowledge
Which category does it Oracle
exactly belong to ?

Exact labeling task (for ground truth labels) is costly, especially when
the categorization task is specialized and strongly depend on the oracle
expertise

Part Ill - Human Knowledge ALG: Fast and Accurate Active Learning
Knowledge-enhanced Graph Learning Framework for Graph Convolutional Networks

114



Graph Active Learning

Human knowledge as soft label: IGP

Our strategy
1 0 0 Yes
Does it belong to
the first category ?
= 0 0.6 0.4 No
Oracle
Query
0.5 0.3 0.2 >
Model Prediction : .
P L G Ground truth label
exactly belong to ?
Previous strategy Oracle

A domain expert only judges the correctness of the predicted labels (a binary
guestion) rather than identifying the exact class (a multi-class question)

« |f the model prediction is incorrect, the node is annotated with the soft label by
re-normalizing the model outputs over the remaining classes

Part Ill - Human Knowledge Information Gain Propagation: a New Way
: . ) 115
Knowledge-enhanced Graph Learning to Graph Active Learning with Soft Labels



Graph Active Learning

Human knowledge as soft label: IGP

/
Train I/ﬁiﬁ

i

~

s

Soft Labels GNN

Influence
Magnitude

Propagated
Information Gain

Information
Gain

7

Model Training

Maximizing IGP

Node Selection

IGP measures the expected information gain of labeling
each node and selects a batch of nodes that can
maximize the information gain propagation on the graph

Part lll - Human Knowledge

Knowledge-enhanced Graph Learning

Update

Node Labeling

The oracle only needs to judge
the correctness of the generated
label

Information Gain Propagation: a New Way 16
to Graph Active Learning with Soft Labels



Graph Active Learning

Human knowledge as soft label: IGP

o0
W

~
W

Test accuracy(%)
3 g

AN
W

20

Part lll - Human Knowledge

Method Cora Citeseer PubMed Reddit ogbn-arxiv
Random  78.8(£0.8) 70.8(£0.9) 78.9(£0.6) 91.1(£0.5) 68.2(+0.4)
AGE 82.5(+0.6) 71.4(£0.6) 79.4(£0.4) 91.6(£0.3) 68.9(£0.3)
ANRMAB 82.4(£0.5) 70.6(£0.6) 78.2(£0.3) 91.5(£0.3) 68.7(£0.2)
GPA 82.8(+0.4) 71.6(£0.4) 79.9(£0.5) 91.8(£0.2) 69.2(£0.3)
SEAL 83.2(£0.5) 72.1(£0.4) 80.3(£0.4) 92.1(+0.3) 69.5(%+0.1)
ALG 83.6(£0.6) 73.6(£0.5) 80.9(£0.3) 92.4(+0.3) 70.1(%0.2)

40, 60 80.. 10
Size of labeling

(a) Cora

Knowledge-enhanced Graph Learning

% 120 140
udget

Test accuracy(%)

~
(=]

N
W

D
S

55

*Size of labeling budget
(b) Citeseer
Different labeling budgets

100

120

% Size of labeling budget

(c) PubMed

4

60

Better
performance
on node
classification

——IGP
—ALG
GRAIN
——RANDOM
——GPA
——AGE
ANRMAB

Information Gain Propagation: a New Way 117
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Graph Active Learning
Open world scenario: OWGAL

« Existing GAL methods mainly focus on a “closed-world” setting, where all nodes belong
to a fixed known group of classes

 In the open world scenario, a graph develops over time as new nodes, edges, and
classes are introduced, and thus GAL is required to make a fair selection among all
nodes for labeling, despite its class has been seen or not

Unknown Class

Learning

Open-world graph active learning (OWGAL) should not only select the
most informative nodes, but uncover nodes of latent new classes

Part Ill - Human Knowledge Open-World Graph Active 118
Knowledge-enhanced Graph Learning Learning for Node Classification



Graph Active Learning
Open world scenario: OWGAL

Unknown Class

Label Propagation "\

.
.
"

- ot 0000030
- 4 * ’ -
O/O/O'\O distribution ‘\F
o’ i ’
* o Tl \\ II
@ . ‘J 1

To make known and unknown classes more identifiable, learn more compact
representations for nodes in the same class, and push known classes as far

away from each other as possible

Part Ill - Human Knowledge Open-World Graph Active 119
Knowledge-enhanced Graph Learning Learning for Node Classification




Graph Active Learning
Open world scenario: OWGAL

Prototype Learning ® O 0O
Unknown Class _ ° )"}’ o
o} i p. labeling
> 9
N\ ! N

Oracle

query>

O o

£ 4+
I

Label Propagation "\ sample | ! /

\ ! Y

]
o weight 0o0vboo0do
- —p B
O/O/O'\O distribution .w:
o’ k ’
* ‘.' Tl \\ II
. - :

Label propagation: motivated by the homophily assumption that adjacent nodes
tend to have the same label, node v is more likely to belong to a novel class if

no labeled node reach it within K steps of random walks on graph

Part Ill - Human Knowledge Open-World Graph Active 120
Knowledge-enhanced Graph Learning Learning for Node Classification
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Graph Active Learning
Open world scenario: OWGAL

Unknown Class

 —
—
Query Oracle
Set 9 query>
° o
£ 4
0 1 ! |}
Label Propagation "\ sjmple | L /
\ /
o s 00000080

N
DN 7
ge J , A

Unify the discovery of unknown classes and important nodes, as it weighs
unseen-class nodes as much as the nodes near the decision boundary, both of

which have high uncertainty scores and should be sampled for labeling

Part Ill - Human Knowledge Open-World Graph Active 121
Knowledge-enhanced Graph Learning Learning for Node Classification




Graph Active Learning
Open world scenario: OWGAL

Baselines

Amazon-Computer

Amazon-Photo

Coauthor-CS

Coauthor-Physics

Micro-F1

Macro-F1

Micro-F1

Macro-F1

Micro-F1

Macro-F1

Micro-F1

Macro-F1

Random
AGE
ANRMAB
GPA

ALG
IGP-hard

82.51 £ 1.77%
80.12 + 2.24%
79.57 £ 1.53%
82.92 + 1.45%
79.83 + 1.85%
65.72 + 2.37%

74.16 £ 2.90%
70.94 + 3.08%
69.28 + 2.77%
7531:£3.71%
64.79 £ 5.91%
31.92 + 1.55%

89.88 + 1.55%
90.35 + 0.87%
89.63 £ 0.53%
91.59 + 0.41%

86.65 + 2.94%
89.17 + 1.32%
88.55 + 1.07%
90.75 + 0.45%

80.61 + 1.30%
8147 + 1.61%

83.58 + 2.64%
80.23 + 1.71%

88.25 + 0.34%
89.08 + 1.69%
89.87 + 1.32%
88.89 + 1.51%
85.97 £ 0.09%
82.34 + 0.23%

80.18 + 1.03%
82.69 + 2.05%
82.33 £ 1.55%
85.78 + 1.82%
72.01 £ 0.19%
59.51 £ 0.43%

91.43 + 1.01%
91.76 + 2.30%
90.96 + 2.02%
91.08 + 1.49%
90.86 + 0.28%
85.92 + 1.42%

87.50 + 1.83%
88.08 + 3.99%
87.68 + 1.82%
87.86 + 2.22%
87.96 £ 0.74%
65.28 + 3.66%

AGE+OpenWGL
AGE+GPN
OWGAL (Ours)

84.21 +£ 0.27%

76.24 + 1.05%

80.01 + 2.22%

86.39 + 1.20%

68.57 + 4.10%

80.79 + 2.80%

91.33 + 1.14%
89.93 £ 0.52%

93.09 + 0.61%

90.00 + 1.36%
88.98 + 0.62%

91.71 + 0.79%

88.03 £ 0.19%

90.16 + 0.09%

91.42 + 0.4%

76.26 £ 0.51%

87.03 + 0.25%

88.77 £ 0.5%

92.79 + 0.34%
92.92 + 0.19%
93.11 + 0.28%

89.74 + 0.54%
90.11 + 0.23%
90.36 + 0.62%

Baselines

Arxiv

Reddit

Products

Micro-F1

Macro-F1

Micro-F1

Macro-F1

Micro-F1

Macro-F1

Random
AGE
ANRMAB
GPA
ALG
IGP-hard

62.53 + 0.74%
61.44 + 0.38%
61.85 £ 0.54%
58.59 + 0.34%
59.71 + 0.50%
56.35 + 3.58%

33.79+1.12%
31.91 + 1.44%
30.67 £ 1.83%
31.34 + 0.98%
22.36 + 1.28%
22.92 + 2.74%

85.54 + 0.94%
78.40 + 0.43%
77.40 £ 0.58%
85.00 + 1.52%
86.14 + 0.67%
77.37 £ 0.58%

70.47 + 2.25%

63.61 + 0.68%

55.39 + 1.09%
56.12 + 1.36%
69.65 + 5.96%
68.55 + 1.27%
49.21 £ 2.37%

62.48 + 1.04%
62.55 £ 0.93%
58.35 + 1.06%
63.59 + 0.88%
59.97 £ 0.97%

22.89 + 0.59%
23.29 + 0.69%
23.07 £ 0.83%
21.22 £ 0.25%
21.63 + 0.67%
21.31 £ 0.77%

AGE+OpenWGL

AGE+GPN

OWGAL (Ours)

Part lll - Human Knowledge

Knowledge-enhanced Graph Learning

62.27 = 0.12%
61.34 + 0.38%
63.32 + 0.49%

33.85 + 0.39%
31.14 + 0.82%
38.23 + 0.62%

82.14 + 1.04%
74.73 + 1.37%

88.41 + 0.71%

67.35 + 3.09%
48.62 + 2.91%

80.12 + 1.35%

58.89 + 0.85%
56.72 + 0.73%

66.46 + 0.79%

22.31 £ 0.85%
21.13 + 0.94%
27.15 + 0.63%

Open-World Graph Active

Better
performance
on node
( classification
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Graph Active Learning
Open world scenario: OWGAL

-®- Random  —A— ANRMAB —#-— GPA —%— AGE+OpenWGL  —*— OWGAL (Ours)
=V— AGE -l- ALG == IGP-hard -&~- AGE+GPN
80 /*
85 1 P e
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Size of budget Size of budget

OWGAL achieves the best performance across different budgets

Part Ill - Human Knowledge Open-World Graph Active 123
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Topics for Knowledge from Humans and Domains </

Graph learning enhanced by human feedback

« Graph active learning with human knowledge

Graph learning enhanced by domain knowledge

@ * Chemistry domain knowledge for molecular property prediction

Part lll - Human Knowledge 124
Knowledge-enhanced Graph Learning



Molecular Graphs

Molecules can be represented as a graph

S
Aspirinin 2D 2D topological graph Aspirinin 3D 3D geometric graph
Part Il - Human Knowledge Graph Neural Networks for Molecules 125
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Domain Knowledge for Molecular Property Prediction ' .

Molecular Property Prediction

‘-‘\ -si‘
/ \
\ \

\ |
\ |

model

\ \
\ | / /
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\
/ o,

Part lll - Human Knowledge
Knowledge-enhanced Graph Learning

> Property —

Toxicity
Solubility
Activity

Graph Neural Networks for Molecules 126



Domain Knowledge for Molecular Property Prediction ‘= (U

Encode molecules in a self-supervised way: GROVER

Contextual property prediction (node/edge level task)

Contextual property extraction Subgraph masking Prediction

m B =T SRS
Lttt - LTV

Input molecule node/edge

mo _________________________________________ ' represepation

Molecular graph

o

e
__2’2\\

¢
__HEN

(Task 1) Contextual property prediction: predict the context-aware
properties of the target node/edge within some local subgraph

Self-Supervised Graph Transformer 127

Part lll - Human Knowledge
on Large-Scale Molecular Data
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Domain Knowledge for Molecular Property Prediction ‘= (U

A
S
3 ’
=1

Encode molecules in a self-supervised way: GROVER

Graph-level motif prediction

Semantic motifs from

- Graph-level Predicti
domain knowledge raph-level Prediction
‘ O 3
/s\
R

Input molecule R—CHs

1
1
1
1
1
1
|
- : —

o C%\N :

- ! Q-CEN‘
¢ R—C=N |
i - 1

R OH. N i — |
1
Molecular graph | T b SRR representation

(Task 2) Motif prediction: functional groups, as one important class of
motifs in molecules, encode the rich domain knowledge of molecules

Part Ill - Human Knowledge Self-Supervised Graph Transformer 128
Knowledge-enhanced Graph Learning on Large-Scale Molecular Data



Encode molecules in a self-supervised way: GROVER

Domain Knowledge for Molecular Property Prediction

Classification (Higher is better)

Dataset BBBP SIDER ClinTox BACE Tox21 ToxCast
# Molecules 2039 1427 1478 1513 7831 8575
TF_Robust [40] | 0.860(0.0s7) 0.607(0.033  0.765(0.0s5) 0-8240.0229  0.6980.012)  0.585(0.031)
GraphConv [24] 0 877(0_036) 0.593(0‘035) 0.845(0.051) 0.854(0_011) 0 772(0_041) 0.650(0_025)
Weave [23] 0 837(0_065) 0.543(0_034) 0.823(0,023) 0-791(0.008) 0 741(0_044) 0.678(0_024)
SchNet [45] 0.847(0.024) 0.5450038) 0.717(0.042) 0.750(0.033)  0.767(0.025)  0.679(0.021)
MPNN [13] 0.913(0.041)  0.595(0.030) 0.879(0.054)  0.815(¢.044) 0.808(0.024)  0.691(¢.013)
DMPNN [63] 019190050 0%3200200  0-897(0.010) 0-852(0.053 [IIIOIB26 00025 018 go11)
MGCN [30] 0.850(0.065) 0.5520.018) 0.6340.042) 0.7340030) 0.7070.016) 0.663(.000)
AttentiveFP [61] 0 908(0'050) 0-605(0.060) 0.933(0_020) 0.863(0'015) 0 807(0_020) 0.579(0'001)
N-GRAM [29] 0.912(0.013) 0.632(0.005)  0.855(0.037) = 0.876(0.035) 0.769(0.027) -4
HU. et.al[18]

ROVER,...

GROVER achieves the best performance on all datasets

compared with existing molecular property predicting methods

Self-Supervised Graph Transformer 129
on Large-Scale Molecular Data
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Domain Knowledge for Molecular Property Prediction

Encode molecules in a self-supervised way: GROVER

GROVER | No Pretrain  Abs. Imp.

BBBP (2039) 0.911 +0.029
SIDER (1427) 0.624 +0.034
ClinTox (1478) 0.834 +0.060
BACE (1513) 0.858 +0.036
Tox21 (7831) 0.803 +0.028
ToxCast (8575) 0.721 +0.016

Average 0.803 +0.038

Self-supervised pre-training strategy can learn the implicit domain
knowledge and enhance the prediction performance

Part Ill - Human Knowledge Self-Supervised Graph Transformer 130
Knowledge-enhanced Graph Learning on Large-Scale Molecular Data



Domain Knowledge for Molecular Property Prediction ' J,

OH
OH
"“O\)\NHz
------ B S e T 0
i i NH,
C1(F)cecec1OCCN)O ; oH ©: i ©:
{ \ E :r " \)(i(\KNHE __________________E “F
_ox )\ C[ ! *CC(N)O C1(F)cceeel*
h NH, V| —_
*OCC(N)O ! / \ \ / \ \
/ \ Cl(F)ecccel* | | | poeeemmeeey 2 0 N
"""" i T ] OO S
1 I NH, !
~ON Q\NHZE i
YO _;66&56" \ *O* *C* *OH *NH2 Cl(*)ccceccl*  *F Motif Tree
1) BRICS Fragmentation 2) Further Decomposition 3) Motif Tree Construction

o N K OH cCI 0 N
Motif Vocabulary © O @ O @ D | | PN ” =

» Three steps: 1) a molecule graph is cleaved based on BRICS. 2) further decomposition
to reduce the redundancy of motifs 3) construct motif trees from molecule graphs

« A motif vocabulary can be built via these 3 steps preprocessing

Part lll - Human Knowledge Motif-based Graph Self-Supervised Learning 131
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Domain Knowledge for Molecular Property Prediction U .

Topology Prediction Motif Prediction

Motif layer

/ !
/
!

\ I "
\ A\ \ .
AR ! 1 |' I ?\ 'p
P\ \\ \\ y ! \ABondm ask \
) v 1.0 \\ Bondtypes‘
I \
I

) Atom mask Motif generative pre-training

CNOSCl

Multiple pre-training strategies: 1) reconstruct the masked atom
and bond, 2) use the generated motif for motif generative pre-

training
Part lll - Human Knowledge Motif-based Graph Self-Supervised Learning 132
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Domain Knowledge for Molecular Property Prediction

One step further, generating motifs for molecules: MGSSL

SSL methods | muv clintox sider hiv tox21 bace toxcast bbbp | Avg.

No pretrain 71,923 58.242.8 57.240.7 754+1.5 74.340.5 70.0+2.5 63.3+1.5 65.5+1.8 67.0

Infomax 75.112.8 73.0+3.2 58.2+0.5 76.5+1.6 75.240.3 75.6+1.0 62.8+0.6 68.1+1.3 70.6

Attribute masking 74.7+1.9 77.5+£3.1 59.64+0.7 7794+1.2 77.24+0.4 7834+1.1 63.3+0.8 65.6+0.9 71.8

GCC 74.1+1.4 13:2::2.6 58.04+0.9 75.54+0.8 76.61+0.5 015 63.54+0.4 66.9+0.7 70.4

GPT-GNN 719.0:E2.5 74.9+2.7 59.340.8 TLOELT 76.1+0.4 78.54+0.9 63.1+0.5 67.5+1.3 71.4
OVe 3 6.9 9 60 0 3 4 [ 0.6 0 63.4+0.6 68.0

MGSSL achieves the best performance, demonstrating the
effectiveness learning from generated motifs

Part lll - Human Knowledge Motif-based Graph Self-Supervised Learning 133
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Topics for Knowledge from Humans and Domains ‘=

Chapter summary

Graph learning enhanced by human feedback LHuma”/l
Domain
« Graph active learning with human knowledge |
|

Graph learning enhanced by domain knowledge

« Chemistry domain knowledge for molecular L Model 1

property prediction
Part lll - Human Knowledge 134

Knowledge-enhanced Graph Learning



AAAI-24 Tutorial
A Feb 2024, VVancouver

Tutorial Website:

yijuntian.com/tutorial

135
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Tutorial Outline

Preliminaries and Foundations

Graph Learning Enhanced by Knowledge from Data
Graph Learning Enhanced by Knowledge from Models
Graph Learning Enhanced by Knowledge from Humans and Domains
Graph Learning Enhanced by Knowledge from External Sources
Knowledge-enhanced Graph Learning for Real-world Applications

Summary and Future Directions 136



Knowledge from External Sources

is interested in

P
g,
2

Person 14 July 1990

La Joconde a Washington

Image Video Knowledge triplets

Part IV - External Knowledge 137
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Topics for Knowledge from External Sources

@ Graph learning on text-rich graphs

« Graph learning on textual-node graphs
« Graph learning on textual-edge graphs

Graph learning on knowledge graphs

« Knowledge Graph Embedding
« Advancing KG tasks with text data

Part IV - External Knowledge 138
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Graph Learning on Textual-node Graphs

What are textual-node graphs?

* Atext-rich network contains a node set, an edge set, and a

text set
« Each node is associated with some textual information

2 '_.r: -------------------- ID Document Text

E = I | Privacy preservation in wireless sensor...
E 2 | Tabu search for the Steiner problem...

E _ 3 | Feature interaction: a critical review...

i :=- 4 | A study of malware in P2P networks...

. S 5 | Understanding the paradoxical effects...

Text-rich network
Part IV - External Knowledge 139
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Graph Learning on Textual-node Graphs

Why do we need text-rich graphs?

» Text-rich graphs provide additional context and explanation to

graphs
+ Text allows for modeling the latent correlation between nodes

ID Document Text

I | Privacy preservation in wireless sensor...
2 | Tabu search for the Steiner problem...

3 | Feature interaction: a critical review...

4 | Astudy of malware in P2P networks...

5 | Understanding the paradoxical effects...

Text-rich network

Part IV - External Knowledge 140
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Graph Learning on Textual-node Graphs

Pretraining-finetuning on textual-node graphs: Patton

- |Link Prediction I
qReranking l

Network-contextualized Bioricimad . . - !Reélriev_e;! _ |
. I T e assification
Masked Language @Q TN YY adli

Classification Classification
head head
A A

Modeling: mask several é\@ g DN AN | e S
tokens in the text sequence |~, i - % %ﬁ
and utilizes the surrounding . [ Graph-based Aggregation

unmasked tokens to predict
them

Masked Node Prediction: © Finetuning -,
Predict the masked nodes  |mreiomorsosregsion 2@/ @ B contex;t‘;
based on the adjacent S T I TN | DT B = Rl
network structure @ Pretrainin >
g @ A Text-rich Network
Graphformer
Part IV - External Knowledge PATTON: Language Model 141
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Graph Learning on Textual-node Graphs

Pretraining-finetuning on text-rich graphs: Patton

Method Mathematics Geology Economics Clothes Sports
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1  Micro-F1
BERT 18.14¢ o7 22.04¢ 392 21.97¢ .87 29.630.36 14.170.08 19.779.12 45.101 47 68.549 25 31.880.23 34.580 56
GraphFormers 18.690_52 23-240.46 22.640.92 31-021.16 13.681_03 19.001_44 46.271_92 68.972.46 43-770.63 50-470.78
Oﬁ th h If SciBERT 23.500.64 23.109.93 29.491 o5 37.821 89 15.91¢ .48 21.320.66 - - - -
-the-snhe SPECTER 9337007 29.83096 3040045 3854077 16.160.07  19.849.47 i i i i
PLMS SimCSE (unsup) 20.120_08 26.110.39 38.780.19 38.550.17 14-540.26 19.070_43 42.702_32 58.720.34 41-910.85 59.190.55
SimCSE (Sup) 20.390_07 25.560.00 25.66().28 33.890,40 15.030,53 18.641,32 52.82()_87 75~540.98 46.69().10 59.190,55
LinkBERT 15.78¢.91 19.751 .19 24.08¢ 58 31.320.04 12.71p.12 16.39¢.22 44.949 59 65.334.34 35.600.33 38.300.09
. BERT.MLM 23.44¢ 39 31.750 58 36.319.36 48.04¢ 69 16.60¢.21 22.711 16 46.980 .84 68.000.84 62.21913 75.430.74
Continuous SciBERT.MLM 93.340.42  30.11p.07  36.9400s  46.540.40 1628038  21.410s ; - - -
I SimCSE.in-domain  25.15 29.85 38.91 48.93 18.08 23.79 57.03 80.16 65.57 75.22
p retra I n I ng 0.09 0.20 0.08 0.14 0.22 0.44 0.20 0.31 0.35 0.18
PATTON
method w7y s = wxm BT, iz
1 w/o NMLM 25.910.45 27.799.07 38.780.19 48.48¢ 17 18.86¢.23 24.25¢.26 56.680.24 80.270.17 65.830.28 76.240 54
w/o MNP 24-790.65 29.441.50 38.000‘73 47.821.06 18.690,59 25.631,44 47.351,20 68.502‘60 64.231,53 76.031,67
Part IV - External Knowledge PATTON: Language Model 142
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Graph Learning on Textual-node Graphs

Heterogeneous text-rich graphs

A heterogeneous network includes the sets of nodes, edges, node types,
and edge types.

— -

&
S, blog

Refg_--24"" corpus & e \

T P . POI

% //, S o /:’g corpus

{ = REE A ’
i ) 66 | ‘

Comutationat” |

1[=) blog [ Textrich if it is associated with
author @ semantically rich text information

(textless) § 2 :

HWEB . user
CONFERENCE 6%67 venue )
) "a%gﬁbo (textless) ! | (textless) 5 g ey . . .
A < 66 @ @ tag i- Textless if it is not associated with
textless i i i i
Academic Network ' social Media Network & Lores), semantically rich text information
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Graph Learning on Textual-node Graphs

Learn on heterogeneous text-rich networks: Heterformer

Heterformer is a network-empowered Transformer

Center Node Embedding _ *  One Heterformer Layer

Transformer Layer J«; P e e P A e X

(BB (%)

\ | Transformer Layer

N — — — — — —

B Heterformer is a network-empowered Transformer.

’j [ Transformer Layer ] 'O Textless N°de'
7 A @Text rich Node..

.................

Part IV - External Knowledge Heterformer: Transformer-based Deep Node Representation 144
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Graph Learning on Textual-node Graphs

Learn on heterogeneous text-rich networks: Heterformer

7 N\
[l Token/Node Hidden State .:. :
[l Text-rich Neighbor Aggregation Embedding Center Node Embeddmg ? !

[l Textless Neighbor Aggregation Embedding ;;/ \\k TeXt| eSS N Od e E n COd | ng Latent Space
1

Transformation

l Neighbor Aggregation

[ S

......... i [CLS]
i Transformer Layer ,

Softmax @

NelgthI’ N dot product . \
Aggregation |\ m}% . — . o—g@ B
) o @
Vv K Qf Q/\O
I U, Up, Up E
7 T Neilhborj Cente§r Node .'_O Textless Node\i

;@Text-rich Node}
Neighbor Aggregation Module ~-<_._._._._._._.y
Text-rich Neighbors Center Node (text-rich Textless Neighbors

Transformer-based Text-Rich Node Encoding
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Graph Learning on Textual-node Graphs

Learn on heterogeneous text-rich networks: Heterformer

Method DBLP Twitter Goodreads

PREC MRR NDCG PREC MRR NDCG PREC ’ MRR | NDCG

MeanSAGE 0.7019 0.7964 0.8437 0.6489 0.7450 0.7991 0.6302 0.7409 0.8001

BERT 0.7569 0.8340 0.8726 0.7179 0.7833 0.8265 0.5571 0.6668 0.7395

% BERT+MeanSAGE 0.8131 0.8779 0.9070 0.7201 0.7845 0.8275 0.7301 0.8167 0.8594

(@) BERT+MAXSAGE 0.8193 0.8825 0.9105 0.7198 0.7845 0.8276 0.7280 0.8164 0.8593

g BERT+GAT 0.8119 0.8771 0.9063 0.7231 0.7873 0.8300 0.7333 0.8170 0.8593

E GraphFormers 0.8324 0.8916 0.9175 0.7258 0.7891 0.8312 0.7444 0.8260 0.8665

'z BERT+RGCN 0.7979 0.8633 0.8945 0.7111 0.7764 0.8209 0.7488 0.8303 0.8699

% BERT+HAN 0.8136 0.8782 0.9072 0.7237 0.7880 0.8306 0.7329 0.8174 0.8597

o BERT+HGT 0.8170 0.8814 0.9098 0.7153 0.7800 0.8237 0.7224 0.8112 0.8552

% BERT+SHGN 0.8149 0.8785 0.9074 0.7218 0.7866 0.8295 0.7362 0.8195 0.8613
T

GraphFormers++ 0.8233 0.8856 0.9130 0.7159 0.7799 0.8236 0.7536 0.8328 0.8717

Heterformer | 0.8474* | 0.9019* | 0.9255* | 0.7272* | 0.7908* | 0.8328" | 0.7633* | 0.8400* | 0.8773*

Heterformer captures the heterogeneous structure information and the
rich contextualized textual information hidden inside the networks

Part IV - External Knowledge Heterformer: Transformer-based Deep Node Representation 146
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Graph Learning on Textual-edge Graphs

What are textual-edge graphs?
A text-rich network contains a node set, an edge set, and a text set.

Each edge is associated with some textual information

* When a person replies to another on social media, there will be a directed
edge between them accompanied by the response texts

* When a user comments on an item, the user’s review will be naturally
associated with the user-item edge

Why do we need textual-edge graphs?

« Textual-edge is ubiquitous in the real world
« Textual-edge provides rich information to describe the relationship
between nodes

Part IV - External Knowledge 147
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Graph Learning on Textual-edge Graphs

Learn on textual-edge graphs: Edgeformer

Node Representation . .
P B O O O Virtual Node Tollen Hidden States

Edge Representation

Network-aware

- ->
_- ] -7
O
-, >
Lyl _
- >
-p] !
. >
Lyl _
—————— e

Edge
Representation |||!,/|, L o [/ [ g|® & sffw: | o cdia o aiw: | (o e s win = > 52
Learning %
BB

(a) Edgeformer-E (b) Edgeformer-N
Text-aware Node Representation Learning

Edgeformers: Graph-Empowered Transformers for

Part IV - External Knowledge
Representation Learning on Textual-Edge Networks
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Graph Learning on Textual-edge Graphs

Learn on textual-edge graphs: Edgeformer

Amazon-Movie Amazon-Apps Goodreads-Crime Goodreads-Children
Model Macro-F1 Micro-F1 Macro-F1  Micro-F1 ~ Macro-F1  Micro-F1 ~ Macro-F1  Micro-F1
Edg e TF-IDF 50.01 64.22 48.30 62.88 43.07 51.72 39.42 49.90
TF-IDF+nodes 53.59 66.34 50.56 65.08 49.35 57.50 47.32 56.78
Classification BERT 61.38 71.36 59.11 69.27 56.41 61.29 51.57 57.72
BERT+nodes 63.00 72.45 59.72 70.82 58.64 65.02 54.42 60.46
Edgeformer-E 64.18 73.59 60.67 71.28 61.03 65.86 57.45 61.71
Amazon-Movie Amazon-Apps  Goodreads-Crime Goodreads-Children  StackOverflow
Model MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG
MF 0.2032 0.3546 0.1482 0.3052 0.1923 0.3443 0.1137 0.2716  0.1040 0.2642
MeanSAGE 0.2138 0.3657 0.1766 0.3343 0.1832 0.3368  0.1066 0.2647 0.1174  0.2768
MaxSAGE 0.2178 0.3694 0.1674 0.3258 0.1846 0.3387 0.1066 0.2647 0.1173  0.2769 . ' g
GIN 0.2140 03648 0.1797 03362 0.1846 03374 0.1128 02700  0.1189 0.2778 S | g N |f| Cca nt
CensNet 0.2048 0.3568 0.1894 0.3457 0.1880 0.3398 0.1157 0.2726  0.1235 0.2806
LI N k NENN 0.2565 0.4032 0.1996 0.3552 0.2173 0.3670 0.1297 0.2854  0.1257 0.2854 I m rove m e nt
BERT 0.2391 0.3864 0.1790 0.3350 0.1986 0.3498 0.1274  0.2836  0.1666 0.3252 p
P red I Ctl O n BERT+MaxSAGE  0.2780 0.4224 0.2055 0.3602 0.2193 0.3694 0.1312  0.2872  0.1681 0.3264
BERT+MeanSAGE 0.2491 0.3972 0.1983 0.3540 0.1952 0.3477 0.1223 0.2791 0.1678 0.3264
BERT+GIN 0.2573  0.4037 0.2000 0.3552 0.2007 0.3522 0.1238 0.2801 0.1708 0.3279
GraphFormers 0.2756 0.4198 0.2066 0.3607 0.2176 0.3684 0.1323 0.2887 0.1693 0.3278
BERT+CensNet 0.1919 0.3462 0.1544 0.3132 0.1437 0.3000 0.0847 0.2436  0.1173  0.2789
BERT+NENN 0.2821 04256 02127 03666 0.2262 0.3756 0.1365 0.2925 0.1619 0.3215

N

Part IV - External Knowledge Edgeformers: Graph-Empowered Transformers for
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Topics for Knowledge from External Sources

Graph learning on text-rich graphs

« Graph learning on textual-node graphs
« Graph learning on textual-edge graphs

@ Graph learning on knowledge graphs

« Knowledge Graph Embedding
« Advancing KG tasks with text data

Part IV - External Knowledge 150
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Knowledge Graphs

A collection of interlinked entities

* QObjects, events or concepts
« Multiple types of entities and relations exist

Facts are represented as triplets (h, r, t)

« (‘Paris’, is_a’, ‘city’) it
* (‘Alice’, ‘is_friend of’, ‘Bob’)

Part IV - External Knowledge
Knowledge-enhanced Graph Learning



Knowledge Graph Embedding

Preliminaries

Goal: Encode (1) entities as low-dimensional vectors and (2) relations as parametric
algebraic operations in the continuous space

How-to: Design a score function f.(h,t) w.r.t. such embedding vectors so that a true triplet
receives higher score than a false one

KGE design rationale: Capture KG patterns /Notation & Symbols \
« Symmetry, antisymmetry, inversion and composition * h: head entity
* r:relation
Applications of knowledge graph embedding . ¢: tail entity

* f.(h,t): the score function

. K led h completion
nowleage graph completi « d.(h,t): the distance function

- Question answering « True/positive triplet: (h,,t)
. Recommender system False/negative triplet: (h',r,t), (h,1,t'),
K (R, 1, t)
Part IV - External Knowledge 152
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Knowledge Graph Embedding

Preliminaries: Symmetric/Antisymmetric Relations

Symmetric/Antisymmetric Relations
« Symmetric: e.g., Marriage
« Antisymmetric: e.g., hasChild

Formally:
r is Symmetric: r(x,y) = ryx) if vy

r is Antisymmetric: r(x.y) = -r@.x)if vxy

153
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Knowledge Graph Embedding

Preliminaries: Inverse Relations

Inverse Relations
« Hypernym and hyponym:

o Color is the hypernym (r,) of blue, and blue is the hyponym (r;) of color

« Husband (r,) and wife (ry)

Formally:

r, is inverse to relation r,: nxy) =>n@.x)ifvyy

Part IV - External Knowledge 154
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Knowledge Graph Embedding

Preliminaries: Composition Relations

Composition Relations
« My mother’s husband is my father
« 1. hasMother, r,: hasHusband

« 13: hasFather

Formally:

r3 IS @ composition of relation r,and relation r,:

r(x, ) Ary(y,2z) = r3(x, 2) if vx, Y, Z

Part IV - External Knowledge 155
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KG Embedding Method #1: TransE

Embedding space: Each entity and relation as a low-dimensional vector in R*

Key idea: Relation r as a translation from the head entity h to the tail entity t

« An ideal/predicted tail entity: torea =h + 1

Score function: f.(h,t) = —d,(h,t) = —||h +r —t|] « Triplet: (b, 1,t)
« Embedding vectors: h,r, t
Distance function: d..(h,t) = ||h + r — t|
A

British

American

Tom
Holland

Translating Embeddings for 156
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KG Embedding Method #1: TransE

Training Process

For each positive triplet (h,r,t) € S,

o Sample a set of corrupted triplets (h,7,t") € S’ n0r (h',7,t) € S'(rp)

Learning: Maximize a margin-based ranking criterion
aMinimize L = Z(h,r,t)ES Z(h’,r,t’)ES’(h’r,t) mClX(]/ + dr(h, t) —dr (h,,t,), O)

j @ True triplet: (h,r, t) A
margin « Corrupted triplets:
« (h,rt),(hrt){H,rt)

« y:the margin
- J

Part IV - External Knowledge Translating Embeddings for 157
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KG Embedding Method #1: TransE
Key Properties

Pros
« Can model antisymmetric relations: h+r=t, butt+r + hifr #0
« Can model inverse relations:h+ry=t,t+r, =h, ry = —n,

« Can model composition relations: r3 =r; +

Cons

« Cannot model symmetric relations:h+r=t, t4+r=h,thenr=0

Part IV - External Knowledge Translating Embeddings for 158
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KG Embedding Method #2: DistMult

Embedding space: Each entity and relation as a low-dimensional vector in R*
Key idea: Relation r defined as the elementwise weights of the head entity

Score function: fi(ht) =<hrt>= z h -1 - 4
j

 Intuition: Can be viewed as a dot product between h - rand t

fr(h, t) L
Q S — — r
LS\ Oum
RN I e ﬁ tpred
r — —_—
SRR o B ,,
N B \ t
h t r h tpr: ,
Part IV - External Knowledge Embedding Entities and Relations for 159
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KG Embedding Method #2: DistMult
Key Properties

Pros
- Can model symmetric relations: fi.(h,t) =<h,r,t >=;h; - 15-t; =<tr,h>=
fr(th)
Cons
« Cannot model antisymmetric relations: f.(h,t) and f.(t,h) are always the same
« Cannot model inverse relations: if < h,ry,t >=<t,rp,,h > ,itmeansr; =,

« Cannot model composition relations: it does not model a bijection mapping
from h to t via relation r

Part IV - External Knowledge Embedding Entities and Relations for 160
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KG Embedding Method #3: ComplEXx

Embedding space: Each entity and relation as a low-dimensional vector in C*

Key idea: Explore the asymmetry of the Hermitian dot product to accommodate
antisymmetry

Score function: f.(ht) = Re(z: hj-r-t;)
j

iy /Notation & Symbols N
A iy o « z = x +iy:apoint in complex space
yr: [] « Re(z) = x : the real part
5 AN  Im(z) = y: the imaginary part
; \ » Hermitian dot product < h, t>= Zi h; - t;
r ! . . 5 - -
N | -  J: the j-th embedding dimension
Y z=x—iy Conjugate " t k /
Part IV - External Knowledge Complex Embeddings for

. : - 161
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KG Embedding Method #3: ComplEXx
Key Properties

Pros

o Can model antisymmetric relations: when Re(r) = 0 (e.g., r is purely
imaginary)
o Can model symmetric relations: when Im(r) = 0 (e.g., r is purely real)

o Can model inverse: when ry is the conjugate of r,

Cons

o Cannot model composition relations: it does not model a bijection mapping
from h to t via relation r

Part IV - External Knowledge Complex Embeddings for 162
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KG Embedding Method #4: RotatE

Embedding space: Each entity and relation as a low-dimensional vector in C*

Key idea: Relations modelled as rotations in complex space
 An ideal tail entity: t=h°r,
Define each relation r as an element-wise rotation from the head entity embedding h to the

tail entity embedding t, i.e.,
t=h°r, where |rj|=1

° is the element-wise product. More specifically, we have t; = h;r;, and

Iy = e'or) Notation & Symbols
« i=+/-1

where 6, ; is the phase angle of r in the j-th dimension . the j-th embedding dimension

RotatE: Knowledge Graph Embedding by ;¢4

Part IV - External Knowledge
Relational Rotation in Complex Space
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KG Embedding Method #4: RotatE

Geometric Interpretation

Score function: f.(h,t)=—||h°r—t||
Define the distance function of RotatE as  d,(h,t) = ||h°r —t||

A h
I
. |htr-t]
D>
h htr ¢ hr
|hr-t|
t

(b) RotatE models r as ro-

(a) TransE models r as
tation in complex plane.

translation in real line.

RotatE: Knowledge Graph Embedding by 164
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KG Embedding Method #4: RotatE

Modeling the Relation Patterns

A relation r is symmetric if and only if r = t1, l.e.,

0, =0o0rm
(h,r,t) and (t,r, h)

An example on the space of C /‘ h
l’j=—10r0r’j=ﬂ' /
t r

RotatE: Knowledge Graph Embedding by 165
Relational Rotation in Complex Space
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KG Embedding Method #4: RotatE

Modeling the Relation Patterns

Relation r is antisymmetric ifand only if r°r + 1

Two relations r; and r, are inverse ifand only if r, =174, i.e.,

0, = —01;

A relation r3; = e': is a composition of two relations r; = et and r, = e'?2 if and

Only if I's =TI °I'p, i.e.,
93 —_ 91 + 92

RotatE: Knowledge Graph Embedding by ;¢¢

Part IV - External Knowledge
Relational Rotation in Complex Space

Knowledge-enhanced Graph Learning



KG Embedding Method #4: RotatE

Optimization

Negative sampling loss
- Make the score of true triplet as large as possible, but the score of false one as small as
possible k
1 !/ !/
L= —logo(y — dy(h, 1)) — z ~log o (d (. ) ~ 7)
j=1 o L
Positive triplet Negative margin

triplet
y is a fixed margin, o is the sigmoid function, and (h;, r, t;) is the j-th negative triplet

« Controls the minimum separation between the scores of positive and negative triplets.

« Prevent model from over-fitting

RotatE: Knowledge Graph Embedding by ;¢

Part IV - External Knowledge
Relational Rotation in Complex Space

Knowledge-enhanced Graph Learning



KG Embedding Method #4: RotatE

Self-adversarial Negative Sampling
Traditionally, the negative samples are drawn in a uniform way

« Inefficient as training goes on since many samples are obviously false

- Does not provide useful information

A self-adversarial negative sampling

- Sample negative triplets according to the current embedding model

- Starts from easier samples to more and more difficult samples

« Curriculum Learning exp af. (', t))
B, [{Chye e 1)3) = o
p( ]|{ o te Tk }) 2 €xp afy(hy, ty)

a is the temperature of sampling. fr(hj’-, t]f) measures the salience of the triplet

Part IV - External Knowledge RotatE: Knowledge Graph Embedding by 168
Knowledge-enhanced Graph Learning Relational Rotation in Complex Space



KG Embedding Method #4: RotatE

The Final Objective

Instead of sampling, treating the sampling probabilities as weights
« p is used to weight each negative sample

n
L=—logo(y —d,(0,0)) — » p(hj,r,t))loga(d,(ht) —y)
=1

— j e /
Positive triplet Negative margin
Intuitions: triplet
+ the smaller the dr(hi., t) s, Notation & Symbols p
* the more likely the triplet is true, « j: the j-th negative sample
» the harder the negative ftriplet, > 0 @ DUTISED OF EgRlive SEmpies
« the higher the weight p - ¥: the margin Y
Part IV - External Knowledge RotatE: Knowledge Graph Embedding by 169
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Empirical Comparisons of KG Embedding

Observation

FB15k-237 WNI18RR
MR MRR H@l H@3 H@l0 | MR MRR H@l H@3 H@I0
TransE 357 .294 - - 465 3384  .226 - - 501
DistMult 254 241 155 263 419 5110 43 .39 44 49
ComplEx 339 247 158 275 428 5261 44 41 46 S1
ConvE 244 325 237 356 501 4187 43 40 44 52

pRotatE 178 328 230  .365 524 | 2923 462 417 479 552
RotatE 177 338 241 375 S33 | 3340 476 428 492 S71

RotatE performs the best, on both datasets, on different metrics

Part IV - External Knowledge 170
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KG Embedding Method: Summary

Model Score Function Symmetry Antisymmetry Inversion Composition
TransE —||lh +r —t]| X v v v
DistMult <hrt> Vv X X X
ComplEx Re(< h,r,t>) v v/ v X
RotatE —|[|h°r — t|| v v v v
(Some) KGE models in recent literature:
TranskE ComplEx HolE ComplEx-N3
(Bordes et al., 2013) (Trouillon et al., 2016) (Nickel et al., 2016) (Lacroix et al., 2018)
o, O O O0—O O O O
RESCAL DistMult ConvE RotatE
(Dettmers et al., 2017) (Sun et al., 2019)

(Nickel et al., 2011) (Yang et al., 2014)

Part IV - External Knowledge
Knowledge-enhanced Graph Learning
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Advancing KG tasks with text data

An example of a KG with entity descriptions

H 3 f’\ Kepler's laws
o ... are three scientific laws describing

N the motion of planets around the Sun,

published by Johannes Kepler.

Germany is a country in Central
and Western Europe ...

A
Ethnic group * ¢ Published by
’ 4

Johannes Kepler

Johannes Kepler was a German
astronomer ... best known for
his laws of planetary motion.

= Occupation

i _‘E\ Astronomer

L e An astronomer is a scientist in

w the field of astronomy ...

... is an independent agency ...
for the civilian space program ...

o Descriptions contain
abundant information
about entities

o Descriptions can help to
represent the relational
facts between them

Part IV - External Knowledge KEPLER: A Unified Model for Knowledge Embedding 172
Knowledge-enhanced Graph Learning and Pre-trained Language Representation



Advancing KG tasks with text data
Train encoder with both KG and NLP losses: KEPLER

Regular KG embedding loss | |+ | | Masked Language Modeling
h /———’_7” b\ t ‘H
Encoder Embeddings Encoder Encoder ]
A A A T
<s> Johannes Kepler was a German astronomer ... <s> An astronomer is a scientist in the field of ... ... Kepler <mask> to have had an epiphany on ...

A
texty, L , " Texty k
( Johannes Kepler QoI EIL I Astronomer )

|
| | =T

KEPLER encodes text descriptions as entity embeddings,

and train the shared encoder via MLM loss

Part IV - External Knowledge KEPLER: A Unified Model for Knowledge Embedding 173
Knowledge-enhanced Graph Learning and Pre-trained Language Representation




-1 O
Graph Learning Enhanced by External Knowledge ufy!

Chapter summary

Graph learning on text-rich graphs LEXtemall
« Graph learning on textual-node graphs Sources
« Graph learning on textual-edge graphs A
LYY
Graph learning on knowledge graphs
. Knowledge Graph Embedding L Mode! 1
« Advancing KG tasks with text data
Part IV - External Knowledge 174
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Tutorial Outline

Preliminaries and Foundations

Graph Learning Enhanced by Knowledge from Data

Graph Learning Enhanced by Knowledge from Models

Graph Learning Enhanced by Knowledge from Humans and Domains

Graph Learning Enhanced by Knowledge from External Sources

Knowledge-enhanced Graph Learning for Real-world Applications

Summary and Future Directions 175



Applications

@':— 1) Knowledge-enhanced Graph Learning for Recommendation

« Path-based recommendation methods
* Propagation-based recommendation methods

2) Knowledge-enhanced Graph Learning for Natural Language
Processing (NLP)

« Natural Language Understanding
« Commonsense Reasoning
« Advancing LLMs with Knowledge

Part V - Applications 176
Knowledge-enhanced Graph Learning



Knowledge-enhanced Graph Learning for Recommendation

An example KG for recommendation

~ | -

Interstellar
Bob
Lffc?fcbed ‘
friend
- |
G Inception
Lixa /
Alice “heq @
|
Titanic

Part V - Applications
Knowledge-enhanced Graph Learning

genre ® ‘e ‘

Science

fiction

genre
acted
Leonardo
DiCaprio
acted

directed ”

James
Cameron

‘?C[

direct

include

— o o s s - o o e o o e e e .

Blood Diamond

Recommended movies

A Survey on Knowledge Graph-
Based Recommender Systems
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Knowledge-enhanced Graph Learning for Recommendation

Preliminary: traditional collaborative filtering

watched by both users

If a person A has the same
preference as a person B on
a product, A is more likely to
have B’s preference on a
different product than that of a
randomly chosen person

Part V - Applications 178
Knowledge-enhanced Graph Learning



Knowledge-enhanced Graph Learning for Recommendation

Path-based recommendation methods: SemRec

@ @ Graph schema of Douban data

‘@ 15 H * Metapaths captures different semantic
knowledge

« Users appeared in same metapath can
@ have similar ratings

Meta Path Semantic Meaning Recommendation Model
Uu friends of the target user Social recommendation
UGU users in the same group of the target user Member recommendation
UMU users who view the same movies with the target user Collaborative recommendation
UMTMU | users who view the movies having the same types with that of the target user Content recommendation
Part V - Applications Semantic Path based Personalized Recommendation 179

Knowledge-enhanced Graph Learning on Weighted Heterogeneous Information Networks



Knowledge-enhanced Graph Learning for Recommendation

Problems of SemRec

Metapaths might fail to capture the complex structure and all the
semantic knowledge

FriendOf A: aspect extracted from reviews
R: reviews
o @ < & U: users
Mention S?/ Qf Q)@Ij)cateln B bUSIHeSS
@ @ Rate \@ Q Cat: category of item
Ci: city.

Graph schema of Yelp data

Part \ - Applications Meta-Graph Based Recommendation Fusion

_ . 180
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Knowledge-enhanced Graph Learning for Recommendation

Address problems of SemRec: FMG

Metapaths might fail to capture the complex structure and all the
semantic knowledge

What if Ryand R, give the same rating for a business B; and mention
the same aspect 4,7

@ Write @ "V"\’e @ Write Check-in
M@ {\0(\
Dy, N

Use metagraph, a directed acyclic graph that contains more
semantic knowledge

Part \ - Applications Meta-Graph Based Recommendation Fusion
Knowledge-enhanced Graph Learning over Heterogeneous Information Networks
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Knowledge-enhanced Graph Learning for Recommendation

Path-based recommendation methods: Limitations

* The choice of metapath and metagraph need to be defined
manually

* Metapath and metagraph varying across datasets
It might require labor-intensive feature engineering to extract

relevant paths and structures

Part V - Applications Meta-Graph Based Recommendation Fusion 182
Knowledge-enhanced Graph Learning over Heterogeneous Information Networks



Knowledge-enhanced Graph Learning for Recommendation

Knowledge graph-aware recommendation methods: KGCN

e“[h]

iteration h + 1

(v¥) o
¥

e predicted probability

A two-layer receptive field The framework of KGCN

Part V - Applications
Knowledge-enhanced Graph Learning

Learning item representations
by aggregation on KG

Use other items to enhance
the representation of target
item

Knowledge Graph Convolutional 183
Networks for Recommender Systems



Knowledge-enhanced Graph Learning for Recommendation

Knowledge graph-aware recommendation methods: KGCN

-©- LibFM+TransE
PER

Recall@K

1 2 5 10 20 50 100
K

The results of top-K recommendation
on Book-Crossing dataset

Part V - Applications
Knowledge-enhanced Graph Learning

KGCN achieves the best results,
demonstrating the benefit of
incorporating knowledge from KG

Knowledge Graph Convolutional
Networks for Recommender Systems

184



Knowledge-enhanced Graph Learning for Recommendation

Knowledge graph-aware recommendation methods: KGNN-LS

Entity (item)
\\features E

Original knowledge G with real-valued weights Knowledge-aware graph neural networks: Label smoothness regularization on KG
graph G A, for given user u vy = KGNN(E, A,) (feature propagation) weights: R(A,,) (label propagation)

Predicting function $,,,, = f(u, v,)

L= ](yuw Yuv) as AR(Au) ‘

KGNN-LS is Similar to KGCN. First extract a graph of interest to user u, then
use GNNs to learn on this user-specific graph

Part V - Applications Knowledge-aware Graph Neural Networks with Label 185
Knowledge-enhanced Graph Learning Smoothness Regularization for Recommender Systems



Knowledge-enhanced Graph Learning for Recommendation

Knowledge graph-aware recommendation methods: KGNN-LS

Entity (item)
\\features E

Original knowledge G with real-valued weights Knowledge-aware graph neural networks: Label smoothness regularization on KG
graph G A, for given user u vy = KGNN(E, A,) (feature propagation) weights: R(A,,) (label propagation)

l Predicting function $,,,, = f(u, v,)

L= ](yuw Yuv) as AR(Au) ‘

One step further, KGNN-LS utilizes label smoothness: adjacent items in KG
are likely to have similar user preferences

Part V - Applications Knowledge-aware Graph Neural Networks with Label 186
Knowledge-enhanced Graph Learning Smoothness Regularization for Recommender Systems



Knowledge-enhanced Graph Learning for Recommendation

Knowledge graph-aware recommendation methods: KGAT

1@

Attentive Embedding D:D - "‘*—* Concatenate |
Propagation e

- e
OfTF——
eiz

CKG Embedding Layer Attentive Embedding Propagation Layers Prediction Layer Attentive Embedding Propagation Layer

Utilize both item-item connections from KG and user-item direct interaction to
learn user and item representations

Part V - Applications KGAT: Knowledge Graph Attention 187
Knowledge-enhanced Graph Learning Network for Recommendation



Knowledge-enhanced Graph Learning for Recommendation

Knowledge graph-aware recommendation methods: KGAT

..........................

— T

Attentive Embedding T . "‘*—* Concatenate |
Propagation e

9
yu1i3
€1 €2 €3 129 __....I . | @) .
© @] Attentive Embedding D:D o fs < Concatenate |
€i, Propagation m
SO
CKG Embedding Layer Attentive Embedding Propagation Layers Prediction Layer Attentive Embedding Propagation Layer

Aggregate neighbor information with attention mechanism: reveal the
importance of high-order connections

Part V - Applications KGAT: Knowledge Graph Attention 188
Knowledge-enhanced Graph Learning Network for Recommendation
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Knowledge-enhanced Graph Learning for Recommendation

Knowledge graph-aware recommendation methods: KGAT

Recommendation Performance Comparison

Amazon-Book Last-FM Yelp2018

recall ndcg recall ndcg recall ndcg
FM 0.1345 0.0886 0.0778 0.1181 0.0627 0.0768
NFM 0.1366 0.0913 0.0829 0.1214 0.0660 0.0810
CKE 0.1343 0.0885 0.0736 0.1184 0.0657 0.0805
CFKG 0.1142 0.0770 0.0723 0.1143 0.0522 0.0644

MCRec 01113 0.0783 - - - -
RippleNet | 0.1336 0.0910 0.0791 0.1238 0.0664 0.0822
GC-MC 0.1316 0.0874 0.0818  0.1253 0.0659 0.0790

KGAT 0.1489* 0.1006" | 0.0870" 0.1325" | 0.0712* 0.0867"

KGAT achieves the best performance

Part V - Applications KGAT: Knowledge Graph Attention
Knowledge-enhanced Graph Learning Network for Recommendation
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Applications

1) Knowledge-enhanced Graph Learning for Recommendation

« Path-based recommendation methods
* Propagation-based recommendation methods

- 2) Knowledge-enhanced Graph Learning for Natural Language
Processing (NLP)

« Natural Language Understanding
« Commonsense Reasoning
« Advancing LLMs with Knowledge

Part V - Applications 190
Knowledge-enhanced Graph Learning



* A language model (LM) learns how to express
| go school to to want. )(
| want to go to school. ./

* Knowledge indicates what to express
Q: Where is the painting Mona Lisa? %
A: It is in Louvre, Paris.

Part V - Applications Knowledge-Augmented Methods

_ : 191
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Knowledge-enhanced Graph Learning for NLP

To integrate knowledge into Language Models

« Step 1: Ground language into related knowledge The pen is on the desk.
» String matching, NER, Entity linking, information retrieval
» ldentify concepts and relations in the knowledge source

« Step 2: Represent knowledge
» Concept descriptions, Graph embeddings

« Step 3: Fuse knowledge representation into language model
» Concatenate concept descriptions into input

» Append embeddings into input embeddings L’:\!?A + Input

Part V - Applications Knowledge-Augmented Methods

_ . 192
Knowledge-enhanced Graph Learning for Natural Language Processing



Knowledge-enhanced Graph Learning for NLP

What are the knowledge sources for NLP

WIKIDATA

W

WIKTIONARY

the open content based dictionary

Wikipedia-based
knowledge

Part V - Applications
Knowledge-enhanced Graph Learning

Language

Domain-specific
knowledge

Commonsense
knowledge

Knowledge-Augmented Methods
for Natural Language Processing
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Knowledge-enhanced Graph Learning for NLP
Natural Language Understanding: ERNIE Al

___________________

Token Output ! n'l w l [ wg) l () l LJ | - Entity Output
A

\Aggregator .
[ iformaion Fusion ] « Use TransE to compute entity

), g) \ . embeddings from Wikidata

()[J[J[JE--- i @ @

« Concatenate token input and
. i i Multi- I-jtaadAttent‘l:')n [ h/{ultn-HeadAtter::mn J entity embeddings for |earning
Token Input ( ) (wz J [wg J ( UJ ' egi—l) egi_l) Entity Input

Bob Dylan wrote Blowin’ in the Wind in 1962

ERNIE: Enhanced Language

Part V - Applications
Representation with Informative Entities

Knowledge-enhanced Graph Learning



Knowledge-enhanced Graph Learning for NLP
Natural Language Understanding: ERNIE

Model | Acc. Macro  Micro

NFGEC (Attentive) | 54.53 74.76 71.58
NFGEC (LSTM 55.60 75.15 71.73
52.04 75.16 71.63

| 57.19 76.51 73.39

Entity typing task on the FIGER dataset

FewRel TACRED
Model P R F1 P R F1
CNN 69.51 69.64 6935 | 7030 5420 61.20
PA-LSTM ; - - | 6570 6450  65.10
0 O /]

-GCN - - - 69 .90 63 3( 66.40
BERT 85.05 85.11 84.89 67.23 64.81 66.00
ERNIE | 88.49 88.44 88.32 | 69.97 66.08 67.97

Relation classification task

Part V - Applications
Knowledge-enhanced Graph Learning

JB

&
N

L1

Model MNLI-(m/mm) QQP  QNLI  SST-2
392k 363k 104k 67k
BERTpase |  84.6/83.4 71.2 - 93.5
ERNIE |  84.0/832 71.2 91.3 93.5
Model CoLA STS-B  MRPC RTE
8.5k 5.7k 3.5k 2.5k

85.8 88.9 66.4

83.2 88.2 68.8

General Language Understanding
Evaluation (GLUE) benchmark

ERNIE outperforms BERT across tasks

ERNIE: Enhanced Language
Representation with Informative Entities



Knowledge-enhanced Graph Learning for NLP
Natural Language Understanding: K-BERT

Input sentence: Tim Cook is currently visiting Beijing now

K-BERT Conis N //ty « K-BERT injects relevant triples from the KG
T I and transform the original sentence into a
N o knowledge-rich sentence tree for encoding
Tim — Cook — is — currently — visiting — Beijing — now
\ .2\« KBERTis equipped with an editable KG,
; ' , which can be adapted to its application domain.
E‘“""d“f‘j;y;dmgs S‘”“‘T‘j;:blemm For example, a medical KG can be used to
P grant the K-BERT with medical knowledge
|
Tasks Classification Sequence labeling
Part V - Applications K-BERT: Enabling Language

. : 196
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Knowledge-enhanced Graph Learning for NLP
Natural Language Understanding: K-BERT

Results on different domain-specific tasks

Finance Q&A Law_Q&A Finance NER Medicine NER
Models\Datasets |\ p"""p"""p1 | p R FL| P R Fl| P R Fl

Pre-trained on WikiZh by Google.
83.1 90.1 84.8 874

83.7 912 86.3 89.0 | 87.6
82.1 9338 86.1 88.7

Google BERT | 81.9 86.0

K-BERT (HowNet) 833 84.4 | 839
K-BERT (CN-DBpedia) | 81.5 88.6 | 84.9
K-BERT (MedicalKG) - - -

919 93.1

932 933
939 938
94.0 94.4

K-BERT benefits from the domain knowledge in KGs and performs well
across different domain-specific tasks

Part V - Applications K-BERT: Engbling_ Language
Knowledge-enhanced Graph Learning Representation with Knowledge Graph
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Knowledge-enhanced Graph Learning for NLP ' .

Commonsense reasoning: KagNet

adult ——2°€0f apableOf

Ca pableo\ e}‘?}\
o

work °°

ReceiveAction

glue stick

oca‘xo“

AtLocat ion\‘ wev
office Schema Graph

. N ﬁ @ Knowledge-Aware
rounding Commonsense Inference

Where do adults use glue sticks?

A: classroom  B: office C: desk drawer

Part V - Applications
Knowledge-enhanced Graph Learning

An example of using external
commonsense knowledge for
inference in natural language
commonsense questions

KagNet: Knowledge-Aware Graph
Networks for Commonsense Reasoning



Knowledge-enhanced Graph Learning for NLP

Commonsense reasoning: KagNet

Question Answer

Question Concept Recognition ; i
Answer Fohehe (P« For each pair of question and answer
Language Graph Construction candidate, KagNet retrieves a graph
Encoder (e.g. BERT) via Path Finding from external knowledge graphs (e.qg.
—@®— ConceptNet)
Statement Vector K > \%.

| e T |
Graph - - < \‘ —>® + The retrieved graph contains relevant
Vestor T GoN-LsTMHRA - @ <o knowledge for determining the

KagNet / g wygs . .
MP - s plausibility of a given answer choice
Plausibility score Schema Graph

Part V - Applications KagNet: Knowledge-Aware Graph
Knowledge-enhanced Graph Learning Networks for Commonsense Reasoning
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Knowledge-enhanced Graph Learning for NLP

Commonsense reasoning: KagNet

10(%) of IHtrain 50(%) of IHtrain 100(%) of IHtrain

Model IHdev-Acc.(%) IHtest-Acc.(%) IHdev-Acc.(%) IHtest-Acc.(%) IHdev-Acc.(%) IHtest-Acc.(%)
Random guess 20.0 20.0 20.0 20.0 20.0 20.0
GPT-FINETUNING 27.55 32.46 47.35

GPT-KAGNET 28.13 33.72 48.95
BERT-BASE-FINETUNING 30.11 38.66 53.48
BERT-BASE-KAGNET 31.05 40.32 55.57
BERT-LARGE-FINETUNING 35.71 55.45 60.61
BERT-LARGE-KAGNET 36.82 58.73 62.35

Human Performance - 88.9 - 88.9 - 88.9

Using KagNet outperforms fine-tuning the language models
themselves

Part V - Applications KagNet: Knowledge-Aware Graph
Knowledge-enhanced Graph Learning Networks for Commonsense Reasoning



Knowledge-enhanced Graph Learning for NLP

Commonsense reasoning: KEAR

Score Prediction
2

—~ Self-Attention ExternaljAttention Self-Attention

Related knowledge is
retrieved from external
sources, e.g., knowledge

+

+ + + +
|50||50|---|50‘|51’

Eicus | | Bo |~ | En | | EX | EX
+

- e

r

[> H+E

4 s iy Siig sty
Question & Candidate ConceptNet Definition Training Data g ra p h . d I Ctl O N a ry a N d
What do people do while playing Playing guitar, Guitar: A musical A man is seen what while L. .
guitar? Singing subevent, singing instrument playing the guitar? Singing. tra I n I n g d ata y U S I n g th e

o iInput as the key and then
integrated with the input

Knowledge Retrieval

I |
s 2
: P4 P/‘ &’z OpenBookQA :
I A lp s .df’I'ommonsen.set()lA I
| #‘ éﬁ:: W RiddleSense, Rainbow ... I
| Wikt ; |
I ,,]} ,,.wl ‘E,)I,}%} Data from multiple datasets |
L e e e e e e e e e e e e e e e e e o e e e e e e e e e e |
Part V - Applications Human Parity on CommonsenseQA: Augmenting 201
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Knowledge-enhanced Graph Learning for NLP

Commonsense reasoning: KEAR

Method E-1+VAT D-xxI DV3-l

Base 82.1 83.8 84.6 E-I+VAT: ELECTRA-large with VAT
+ KG 85.2 86.4 86.7 D-xxl: DeBERTa-xxlarge

+ Dictionary 83.8 84.0 85.1 DV3-l: DeBERTaV3-large

+ Training data 34.0 86.4 87.1

Results of applying external attention to different knowledge sources

« These knowledge sources bring gains in commonsense reasoning
accuracy across all base encoder models
« Generally, knowledge graphs contribute the most

Part \ - Applications Human Parity on CommonsenseQA: Augmenting
. . . 202
Knowledge-enhanced Graph Learning Self-Attention with External Attention



Advancing LLMs with Knowledge

What are LLMs (Large Language Models)?

A type of machine learning model that can perform
a variety of language tasks.

@ OpenAI

ChatG PT

Part V - Applications 203
Knowledge-enhanced Graph Learning



Advancing LLMs with Knowledge
Why LLMs Need External Knowledge? & Limitations

The problem of hallucination —» May occasionally generate
incorrect information (from OpenAl)
0 You

Were there fossil fuels in the ground when humans evolved?

, \> ~300 Million Years Ago \> ~300 Thousand Years Ago
Options:

(a) This was only created by humans
(b) Humans predate fossil fuel formation

(c) Significant supplies accumulated prior ——p Correct Answer
(d) None of these

Part V - Applications Graph Neural Prompting with

204
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Advancing LLMs with Knowledge
Why LLMs Need External Knowledge?

The problem of hallucination @

Wrong Answer <——

Explanations that <€——
Make No Sense

Part V - Applications
Knowledge-enhanced Graph Learning

You
Were there fossil fuels in the ground when humans evolved?

Options:

(a) This was only created by humans

(b) Humans predate fossil fuel formation
(c) Significant supplies accumulated prior
(d) None of these

ChatGPT
(b) Humans predate fossil fuel formation

Fossil fuels, such as coal, oil, and natural gas, are formed from the remains of ancient
plants and microorganisms that lived millions of years ago. The process of fossil fuel
formation takes a very long time, and it began long after the evolution of early humans.
Therefore, humans predate the formation of fossil fuels, making option (b) the correct

answer.

Graph Neural Prompting with

Large Language Models 205



Advancing LLMs with Knowledge

How External Knowledge Assists?

Provides Factual Information 2€ro biodiesel (

Were there fossil fuels in the

>
ground when humans evolved?
(c) Significant supplies <
accumulated prior
Retrieved Knowledge for Question
from ConceptNet
Part \V - Applications Graph Neural Prompting with 206
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Advancing LLMs with Knowledge
Graph Neural Prompting (GNP)

Multiple Choice
Question

| |
: O\ f | Option (c) Graph Neural Prompting (GNP) :
| f O > | Option (b) — prmmmm—————- N |
' " Option (a) I Self-supervised h r—L '
| General Domain ' (@) [@]...[e] ! ) L '
| - O] 1= Link Prediction t I
| Knowledge Graph N A3 LIAL J |
| or —_ — | | '
| | e ool 3\ oS 4 N\ | !
I Ql Az :>: ’6 O .o o ! ! ? : I
| Subgraph o) 19" o) | el [
: Retrieval Al Q3 i : &(% L E :
| Biomedical Domain \ ) GNN ! E é | @] | |
| ' (&) () (@) | : \ |
: Knowledge Graph /1 Extracted Subgraphs Encoder : E 5 . E ::{> .:{>: o = :
. \__ . : ! i
| C ' =) 0 |
! Question: il Node Embs Mo?aSI?ty | : | Domain |
| | Q1020304 i) Bty Text ! MR > | Pooling L Projector | | |
| =] Dictionary Emb | ' \ ) Graph Embs |\ ) '
: Options: — b e :
| | (a) A1A2A3 . |
: (b) B1B2 Obtain Graph Neural Prompt :
: (c) C1C2C3C4 :
| |
| |
| |
| |

e e e e e e e e s i s i s e i i s e i i i s s s el

Extracted Knowledge

Part V - Applications

Knowledge-enhanced Graph Learning

Graph Neural Prompting with
Large Language Models
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Advancing LLMs with Knowledge
Graph Neural Prompting (GNP)

| |
: O\ f | Option (c) Graph Neural Prompting (GNP) :
| / O —> | Option (b) R .
! : Option (a) ' | ! Self- ised r :
| General Domain @ PeonR ' [@[0...[0] = elf-supervise hﬁ' |
| Knowledge Graph A3 @) 919 ! Link Prediction t ) |
' or N ! ! l
| — — = — - — |
| ol ' [@][9]...[9) ! | (@) ! |
| Subgraph L = o) 9] (o) ! R |
: Retrieval Al 3 n i | 0f% (=0 :
| Biomedical Domain \ ) GNN ! E é | @] | |
' ' (@] [@)...[0] ! | le] ! |
: Knowledge Graph /1 Extracted Subgraphs Encoder : E )9 ::{> .:{>: @) i:{) :
| - ' s e : Cross E o) ! . I
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Extracted Knowledge ——> Real-life Applications

Graph Neural Prompting with

Part V - Applications
Large Language Models

Knowledge-enhanced Graph Learning

208



Advancing

LLMs with Knowledge

Graph Neural Prompting (GNP)

w/o Knowledge

|
|
|
|
|
|
|
w/ Knowledge :
|
|
|
|
|
|
|
|

LLM Frozen

Prompt Design -

| +13.5%
I

Graph Neural Prompting 77.84

@ LLM Tuned &

Prompt Tuning -

+1.8%
LoRA Fine-tuning - I—I

LoRA Fine-tuning +
Graph Neural Prompting

(00]
I

(o0]

w

Significant
Improvement

"4

Results Averaged Across 4 Commonsense and 2 Biomedical Datasets

Part V - Applications

Knowledge-enhanced Graph Learning

Graph Neural Prompting with
Large Language Models
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Applications

Chapter summary

1) Knowledge-enhanced Graph Learning for Recommendation

« Path-based recommendation methods
* Propagation-based recommendation methods

2) Knowledge-enhanced Graph Learning for Natural Language
Processing (NLP)

« Natural Language Understanding
« Commonsense Reasoning
« Advancing LLMs with Knowledge

Part V - Applications 210
Knowledge-enhanced Graph Learning



Tutorial Outline

 Preliminaries and Foundations

Graph Learning Enhanced by Knowledge from Data

Graph Learning Enhanced by Knowledge from Models

Graph Learning Enhanced by Knowledge from Humans and Domains
« Graph Learning Enhanced by Knowledge from External Sources
« Knowledge-enhanced Graph Learning for Real-world Applications

Summary and Future Directions 211



Summary:. Knowledge-enhanced Graph Learning

Knowledge from Data

Knowledge from Models

Implicit - Knowledge Mo deI Knowledge
| | ™| Model
Knowledge Mode ode
Data Knowledge |/ | Learned Knowledge |/
4 Knowledge from N Knowledge from A
L Humans and Domains External Sources
Explicit
Knowledge Human/ | Knowledge External | Knowledge
J Domain| —> | Model Sources | —> | Model
k Domain Knowledge —/ k External Knowledge —/
Summary

Knowledge-enhanced Graph Learning

D) ©

8Rec‘ =] =] 1=

Real-world Applications

o y
«”, %

)

Future Directions
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| - | i<
Summary: Knowledge-enhanced Graph Learning <
Knowledge from data I

Knowledge from Data

Data Knowledge

| Data Knowledge |/

N Node positions
Local communities

p1p2p3 p1p2p3
p1|1[1]0 p1[1]1]0

O 09 O e p2[1|1[1] p2|1]1]0
edge 2 0ol111 31001
O (ee0) O 5 :

Co-author Co-venue

Heterogeneous Higher-order

Information Semantics
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Summary:. Knowledge-enhanced Graph Learning

Data

Knowledge from Data

Knowledge
—_>

N

Data Knowledge

|/

Summary

Knowledge-enhanced Graph Learning

Knowledge can be obtained from

1) single-instance level perception

Node sampling for node positions (P-GNN)

2) multiple-instance level perception

Path sampling for positional and semantic

information (HGMAE)

Subgraph sampling for community
information (SEAL, WalkPool)
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Knowledge from Models

Teacher | Knowledge | Student
Model | ™| Model

N

Learned Knowledge

|/

Summary
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Learned Embeddings

Probability

Data Similarity

Categories

Logits
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Summary:. Knowledge-enhanced Graph Learning

Knowledge from Models

Teacher | Knowledge | Student
Model | ™| Model

N

Learned Knowledge |/

Summary

Knowledge-enhanced Graph Learning

How to obtain knowledge from

« Logits (TinyGNN, BGNN)
« Embeddings (GraphAKD)
e Structures (LSP, G-CRD)

A recent learning strategy

 distilling an MLP to replace GNNs
(GLNN, NOSMOG)
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Summary:. Knowledge-enhanced Graph Learning

More details can be found in this survey

Bases
Challenges, Preliminaries, Problem, Objectives

4 - 4

Methods and Applications

What to Distill Who to Whom How to Distill
Logits Teacher-free Direct
Knowledge from Models Embeddings | | commomm oo Riapthe
Structures Tffﬁh_e_r'_tc_’ _Sfu_df_"f' Customized
Teacher | Knowledge | Student e =
Model | =™ > | Model | |
| [ One }+ GNN Offline “ :
L'l Multiple KGEM Online KGEM |
N Learned Knowledge |/ I b !
| Number of Teacher Distillation Student |
: Teachers Structures Schemes Structures :

Applications: various tasks on graph, language, and image data.

@ Future Research Directions @
Explainability, Transferability, Theory, Applicability, etc.

1
|
|
|
|
|
|
|
|
|
|
N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
|
|
|
|
|
|
|
|
|
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Summary:. Knowledge-enhanced Graph Learning

4 Knowledge from N
Humans and Domains

Human/ | Knowledge
Domain| —>

& Domain Knowledge J

Summary
Knowledge-enhanced Graph Learning

APPEND TRAIN

Train N models
on labeled training data

Add newly labeled
examples to training data

Active Learning
Loop

ANNOTATE QUERY

Human experts annotate
selected examples

Use acquisition function to
select examples from
unlabeled data

Graph active learning with human knowledge

Domain knowledge such as using motif to
represent functional groups in chemistry

Semantic motifs from
domain knowledge



Summary:. Knowledge-enhanced Graph Learning

Graph learning enhanced by human feedback

« Graph active learning with human knowledge
(ALG, IGP, OWGAL)

4 Knowledge from N
Humans and Domains

Human/ | Knowledge
Domain| —>

k Domain Knowledge —/

Graph learning enhanced by domain knowledge

* Chemistry domain knowledge for molecular
property prediction (GROVER, MGSSL)

Summary 219
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4 Knowledge from N
External Sources

|
|
|
|
|
|
|
|
|
|
External | Knowledge I
ooy [ o J1 1 Text
|
|
|
|
|
|
|
|
I

L External Knowledge —/

La Joconde a Washington

Knowledge triplets

Image
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Summary:. Knowledge-enhanced Graph Learning

-

Knowledge from
External Sources

~

External | Knowledge Model
Sources | — > ode

N

External Knowledge

|/

Summary

Knowledge-enhanced Graph Learning

Graph learning on text-rich graphs

Graph learning on textual-node graphs
(PATTON, Heterformer)

Graph learning on textual-edge graphs
(Edgeformers)

Graph learning on knowledge graphs

Knowledge Graph Embedding
(TransE, DistMult, ComplEXx, RotatE)
Advancing KG tasks with text data
(KEPLER)
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Summary:. Knowledge-enhanced Graph Learning

What are the benefits of utilizing knowledge

‘ Reduce reliance on ‘ Trustworthiness'1‘ ‘ Efficiency 1‘
massive data and
Intricate model

‘ Performance /I\ Robustness Less labeled data

_ o

Explainability Smaller/simpler model
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Future Directions

1) How to obtain high-quality knowledge?

Knowledge sources can contain several issues such as Noises, biases,
Imbalances, missing or incorrect knowledge

Therefore, several research questions arise:

 How to detect and mitigate these issues?

« How to extract high-quality knowledge given these issues?
 How to verify the accuracy and authenticity of the knowledge?
 How to construct knowledge bases without these issues?

Summary 223
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Future Directions

2) How to Integrating knowledge from different sources?

Existing works mainly consider leveraging knowledge from one source, while
ignoring the fact that various sources can provide different knowledge

Therefore, several research questions arise:

« How to identify the right knowledge sources?

« How to prioritize and extract knowledge from different sources?
 How to combine knowledge with different modalities or formats?
 How to integrate knowledge in a complementary manner?

Summary 224
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Future Directions

3) How to handle new knowledge?

New knowledge emerges incrementally and continuously in different time

periods

Therefore, several research questions arise:

Summary

How to collect, measure, and evaluate new knowledge?

How to dynamically update new knowledge into knowledge base?
How to forget old and irrelevant knowledge?

How to balance and encode new knowledge?
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