

Knowledge-enhanced Graph Learning

Yijun Tian ND

Shichao Pei UMB

Xiangliang Zhang ND

Wei Wang Hanghang Tong UCLA

UIUC

Nitesh Chawla ND

AAAI-24 Tutorial Feb 2024, Vancouver

Tutorial Website:

yijuntian.com/tutorial

Yijun is looking for job opportunities

Tutorial Outline

- $2 = \frac{1}{2}$ Preliminaries and Foundations
 - Graph Learning Enhanced by Knowledge from Data
 - Graph Learning Enhanced by Knowledge from Models
 - Graph Learning Enhanced by Knowledge from Humans and Domains
 - Graph Learning Enhanced by Knowledge from External Sources
 - Knowledge-enhanced Graph Learning for Real-world Applications
 - Summary and Future Directions

Graph-structured data are ubiquitous

Graph-structured data are ubiquitous

A real-world graph example:

Graph Machine Learning: Recent Trending

Graph Machine Learning is on fire 🖰

Graph Machine Learning: Previous Tutorials

o Graph Neural Networks: Foundations, Frontiers, Applications

- IJCAI 2022, KDD 2022, AAAI 2023, KDD 2023, WWW 2023
- Graph Neural Networks: Models and Applications
 - AAAI 2020, AAAI 2021
- Large-Scale Graph Neural Networks: The Past and New Frontiers
 - KDD 2023
- Self-supervised Learning and Pre-training on Graphs
 - WWW 2023

Key idea: aggregates information from node neighborhood

Key idea: aggregates information from node neighborhood

Neural networks that aggregate information

Nodes have embeddings at each layer
 "Layer-0" embedding is the input feature of nodes

The computation graph is defined by neighborhood

Basic approach: Average neighbor information and apply a neural network

Existing GNNs primarily focus on leveraging graph structures and node features

Graph Structure: A

Node Features: X

GNN = *f*(Graph Structure, Node Features)

Model	Conference	Citation		
GCN	ICLR 2017	29000+		
GraphSAGE	NeurIPS 2017	12000+		
GAT	ICLR 2018	8000+		
GIN	ICLR 2019	6000+		

Graph Neural Networks: New Frontiers

Existing GNNs primarily focus on leveraging graph structures and node features

Enhancing graph learning with auxiliary knowledge

Graph Neural Networks: New Frontiers Existing GNNs primarily focus on leveraging graph structures and node features Enhancing graph learning with auxiliary knowledge Important and useful information that can be obtained, extracted, or learned from resources beyond the provided graph structures and node features

Graph Neural Networks: New Frontiers

Existing GNNs primarily focus on leveraging graph structures and node features

Enhancing graph learning with auxiliary knowledge

Graph Neural Networks: New Frontiers

Existing GNNs primarily focus on leveraging graph structures and node features

Enhancing graph learning with auxiliary knowledge

Knowledge-enhanced Graph Learning

Knowledge-enhanced Graph Learning

Tutorial Outline

- Preliminaries and Foundations
- Graph Learning Enhanced by Knowledge from Data
 - Graph Learning Enhanced by Knowledge from Models
 - Graph Learning Enhanced by Knowledge from Humans and Domains
 - Graph Learning Enhanced by Knowledge from External Sources
 - Knowledge-enhanced Graph Learning for Real-world Applications
 - Summary and Future Directions

Graph Data are Complex

Data Property

Graph Structure

Node Features

Knowledge

Local communities

Heterogeneous Information

 1
 1
 1
 0
 p1
 1
 1
 0

 2
 1
 1
 1
 p2
 1
 1
 0

 3
 0
 1
 1
 p3
 0
 0
 1

 3
 0
 1
 1
 p3
 0
 0
 1

 Co-author
 Co-venue
 Higher-order
 Semantics

pЗ

Fundamental GNNs Focus on Data Property

Data Property

Graph Structure

GNN = *f*(Graph Structure, Node Features)

Model	Conference	Citation	
GCN	ICLR 2017	29000+	
GraphSAGE	NeurIPS 2017	12000+	
GAT	ICLR 2018	8000+	
GIN	ICLR 2019	6000+	

Node Features

Knowledge is missed

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

• Node sampling for node positions

2) multiple-instance level perception

- Path sampling for positional and semantic information
- Subgraph sampling for community information

Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

Node sampling for node positions

2) multiple-instance level perception

- Path sampling for positional and semantic information
- Subgraph sampling for community information

Why do we need to emphasize node position? Different types of tasks

Position-aware task: nodes labeled by positions

Part I - Data Knowledge Knowledge-enhanced Graph Learning

GNNs usually work well on structure-aware task

Computation graph of nodes v_1 and v_2 differs

 \neq

 v_2

Structure-aware task: nodes labeled by structural roles

GNNs usually perform poorly on position-aware task

Computation graph of nodes v_1 and v_2 are the same

A () Position-aware task: nodes

labeled by positions

 (v_2)

В

В

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode node positions, define anchor

- Randomly pick a node as an anchor node
- Represent v_1 and v_2 with shortest distances to the anchor

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode node positions, define anchor

- pick more nodes as anchors for more coordinate axes
- Represent v_1 and v_2 with shortest distances to these anchors

To encode node positions, define anchor

 Problem: v₁ and v₃ have same shortest distances to these anchors

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Node Sampling for Node Positions

To encode node positions, define anchor

Include multiple nodes in an anchor: anchor-set

*S*₂

Better position
 estimation/encoding

 v_1

 v_3

*S*₁

To use obtained positional encoding

We can simply concatenate it with node features and use them as usual

Problem: sending this concatenated feature to a neural network cannot preserve the permutation invariant property of positional encoding

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To use obtained positional encoding, design P-GNN with permutation invariant aggregation (e.g., mean)

Embedding computation for node v_1

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Anchor-set selection

P-GNNs outperforms GNNs

Link Prediction task, measured in ROC AUC

		Grid-T	Communities-T	Grid	Communities	PPI
	GCN GraphSAGE GAT GIN	$egin{array}{c} 0.698 \pm 0.051 \\ 0.682 \pm 0.050 \\ 0.704 \pm 0.050 \\ 0.732 \pm 0.050 \end{array}$	$\begin{array}{c} 0.981 \pm 0.004 \\ 0.978 \pm 0.003 \\ 0.980 \pm 0.005 \\ 0.984 \pm 0.005 \end{array}$	$egin{array}{c} 0.456 \pm 0.037 \\ 0.532 \pm 0.050 \\ 0.566 \pm 0.052 \\ 0.499 \pm 0.054 \end{array}$	$egin{array}{c} 0.512 \pm 0.008 \ 0.516 \pm 0.010 \ 0.618 \pm 0.025 \ 0.692 \pm 0.049 \end{array}$	$\begin{array}{c} 0.769 \pm 0.002 \\ 0.803 \pm 0.005 \\ 0.783 \pm 0.004 \\ 0.782 \pm 0.010 \end{array}$
Different variants of P-GNN with fast or regular way of calculating shortest path	P-GNN-F-1L P-GNN-F-2L	$\begin{array}{c} 0.542 \pm 0.057 \\ 0.637 \pm 0.078 \end{array}$	$\begin{array}{c} 0.930 \pm 0.093 \\ \textbf{0.989} \pm 0.003 \end{array}$	$\begin{array}{c} 0.619 \pm 0.080 \\ 0.694 \pm 0.066 \end{array}$	$\begin{array}{c} 0.939 \pm 0.083 \\ \textbf{0.991} \pm 0.003 \end{array}$	$\begin{array}{c} 0.719 \pm 0.027 \\ 0.805 \pm 0.003 \end{array}$
	P-GNN-E-1L P-GNN-E-2L	0.665 ± 0.033 0.834 ± 0.099	$0.966 \pm 0.013 \\ 0.988 \pm 0.003$	0.879 ± 0.039 0.940 ± 0.027	$0.985 \pm 0.005 \\ 0.985 \pm 0.008$	0.775 ± 0.029 0.808 ± 0.003

+66%

When graphs come with rich features (e.g., PPI dataset), the performance improvement is smaller, because node features may already capture positional information

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

• Node sampling for node positions

2) multiple-instance level perception

- Path sampling for positional and semantic information
 - Subgraph sampling for community information

Part I - Data Knowledge Knowledge-enhanced Graph Learning DeepWalk: Online Learning of Social Representations 35

Positional embedding

Path Sampling for Positions and Semantics

Sample a path of nodes for positions, e.g., via random walk

U

• •

 Similarity between nodes in a graph translated to closeness in embedding

Path Sampling for Positions and Semantics

Heterogeneous graphs contain rich information with semantics

Heterogeneous Information

Part I - Data Knowledge Knowledge-enhanced Graph Learning
Part I - Data Knowledge Knowledge-enhanced Graph Learning metapath2vec: Scalable Representation Learning for Heterogeneous Networks

Path Sampling for Positions and Semantics

Sample a path of nodes for semantics, e.g., via metapaths

Part I - Data Knowledge Knowledge-enhanced Graph Learning metapath2vec: Scalable Representation Learning for Heterogeneous Networks

38

Path Sampling for Positions and Semantics

Sample a path of nodes for semantics, e.g., via metapaths

To encode the positions and semantics, introducing HGMAE

Metapaths involve the semantic knowledge

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE

Performance Comparison: Node Classification

+7.5%

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE

Datasets	DBLP		Freebase		ACM		AMiner	
Metrics	NMI	ARI	NMI	ARI	NMI	ARI	NMI	ARI
GraphSage	51.50	36.40	9.05	10.49	29.20	27.72	15.74	10.10
GAE	72.59	77.31	19.03	14.10	27.42	24.49	28.58	20.90
Mp2vec	73.55	77.70	16.47	17.32	48.43	34.65	30.80	25.26
HERec	70.21	73.99	19.76	19.36	47.54	35.67	27.82	20.16
HetGNN	69.79	75.34	12.25	15.01	41.53	34.81	21.46	26.60
DGI	59.23	61.85	18.34	11.29	51.73	41.16	22.06	15.93
DMGI	70.06	75.46	16.98	16.91	51.66	46.64	19.24	20.09
GraphMAE	65.86	69.75	19.43	20.05	47.03	46.48	17.98	21.52
ĤeCo	74.51	80.17	20.38	20.98	56.87	56.94	32.26	28.64
HGMAE	76.92	82.34	22.05	22.84	66.68	71.51	41.10	38.27

Performance Comparison: Node Clustering

+17% +25% +27% +33%

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE

Ablation Study

		Semantics	Hetero Info	Positions	
Datasets	Metric	w/o MER	w/o TAR	w/o PFP	HGMAE
	Mi-F1	$76.85{\pm}0.2$	$88.54{\pm}0.4$	89.81±0.5	90.59±0.5
ACM	Ma-F1	71.93±0.4	88.82±0.4	89.94±0.4	90.80±0.5
	AUC	84.84±1.5	96.47±0.1	$97.22{\pm}0.1$	97.69±0.1

- Removing the learning of each knowledge results in decreased performance
- By learning all knowledge, HGMAE achieves the best results

Part I - Data Knowledge Knowledge-enhanced Graph Learning

To encode the positions and semantics, introducing HGMAE How valuable is knowledge?

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Taxonomy of Knowledge from Data

Knowledge can be obtained from

1) single-instance level perception

• Node sampling for node positions

2) multiple-instance level perception

- Path sampling for positional and semantic information
- Signation Subgraph sampling for community information

What is link prediction?

Predicting missing or future links between pairs of nodes is important in social networks, recommender systems, biological networks, and academic graphs

- Friend Recommendation
- Product Recommendation
- Protein-protein Interaction
- Co-authorship Prediction

•

Heuristic methods for link prediction

Name	Formula	Order
common neighbors	$ \Gamma(x)\cap\Gamma(y) $	first
Jaccard	$rac{ \Gamma(x)\cap\Gamma(y) }{ \Gamma(x)\cup\Gamma(y) }$	first
preferential attachment	$ \Gamma(x) \cdot \Gamma(y) $	first
Adamic-Adar	$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log \Gamma(z) }$	second
resource allocation	$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{ \Gamma(z) }$	second
Katz	$\sum_{l=1}^\infty eta^l ext{walks}^{\langle l angle}(x,y) $	high
PageRank	$[\pi_x]_y + [\pi_y]_x$	high
SimRank	$\gamma rac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \mathrm{score}(a,b)}{ \Gamma(x) \cdot \Gamma(y) }$	high

Pros:

- Easy calculation
- Interpretable
- Not dependent on training

Heuristic methods for link prediction: Common Neighbor

x and y are likely to have a link if they have many common neighbors

common neighbors (CN): $|\Gamma(x) \cap \Gamma(y)|$

Part I - Data Knowledge Knowledge-enhanced Graph Learning Graph Neural Networks: Link Prediction 51

Subgraph Sampling for Community Information

Heuristic methods for link prediction: Preferential Attachment

 $\Gamma(x)$ denotes the neighbor set of node x

x is likely to connect to y if y has many connections

preferential attachment (PA): $|\Gamma(x)| \cdot |\Gamma(y)|$

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Graph Neural Networks: Link Prediction 52

Part I - Data Knowledge Knowledge-enhanced Graph Learning Graph Neural Networks: Link Prediction 53

Adamic-Adar (AA): $\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{-}{\log |\Gamma(z)|}$

 $\Gamma(x)$ denotes the neighbor set of node x

Popular common neighbors contribute

Weighted common neighbors

Subgraph Sampling for Community Information

۲

less

Graph Neural Networks: Link Prediction 54

Subgraph Sampling for Community Information

Heuristic methods for link prediction: Problems

- Rule-based strategy, not learning-based
- Strong assumption on link formation mechanisms, which might only work well on certain graphs

Part I - Data Knowledge Knowledge-enhanced Graph Learning Link Prediction Based on Graph Neural Networks 55

Subgraph Sampling for Community Information

 $\begin{array}{c} & & \\ & &$

Extract enclosing

subgraphs

..... Learn graph structure features common neighbors = 0Jaccard = 0

Graph neural network

preferential attachment = 16

common neighbors = 3

Jaccard = 0.6

 $Katz \approx 0.03$

Predict links

1 (link)

→ 0 (non-link)

Sample a subgraph to enhance link prediction: SEAL

Comparison with heuristic methods (AUC)

Data	CN	Jaccard	PA	AA	RA	Katz	PR	SR	ENS	WLK	WLNM	SEAL
USAir	93.80±1.22	89.79±1.61	$88.84{\pm}1.45$	95.06±1.03	95.77±0.92	92.88±1.42	94.67±1.08	$78.89 {\pm} 2.31$	88.96±1.44	96.63 ±0.73	95.95±1.10	96.62 ±0.72
NS	94.42±0.95	$94.43 {\pm} 0.93$	$68.65 {\pm} 2.03$	$94.45 {\pm} 0.93$	$94.45 {\pm} 0.93$	$94.85{\pm}1.10$	$94.89{\pm}1.08$	$94.79 {\pm} 1.08$	$97.64{\pm}0.25$	$98.57 {\pm} 0.51$	98.61±0.49	98.85 ±0.47
PB	92.04±0.35	$87.41 {\pm} 0.39$	$90.14{\pm}0.45$	$92.36 {\pm} 0.34$	$92.46 {\pm} 0.37$	$92.92{\pm}0.35$	$93.54{\pm}0.41$	$77.08 {\pm} 0.80$	$90.15 {\pm} 0.45$	$93.83{\pm}0.59$	$93.49 {\pm} 0.47$	94.72 ±0.46
Yeast	89.37±0.61	$89.32{\pm}0.60$	$82.20{\pm}1.02$	$89.43 {\pm} 0.62$	$89.45 {\pm} 0.62$	$92.24{\pm}0.61$	$92.76 {\pm} 0.55$	$91.49 {\pm} 0.57$	$82.36{\pm}1.02$	$95.86{\pm}0.54$	$95.62{\pm}0.52$	97.91 ±0.52
C.ele	85.13±1.61	$80.19 {\pm} 1.64$	$74.79 {\pm} 2.04$	$86.95 {\pm} 1.40$	$87.49 {\pm} 1.41$	$86.34{\pm}1.89$	90.32 ±1.49	$77.07 {\pm} 2.00$	$74.94{\pm}2.04$	89.72 ± 1.67	86.18 ± 1.72	90.30 ±1.35
Power	$58.80 {\pm} 0.88$	$58.79 {\pm} 0.88$	$44.33 {\pm} 1.02$	$58.79 {\pm} 0.88$	$58.79 {\pm} 0.88$	65.39±1.59	66.00 ± 1.59	76.15 ± 1.06	$79.52{\pm}1.78$	82.41±3.43	$84.76 {\pm} 0.98$	87.61±1.57
Router	56.43±0.52	$56.40 {\pm} 0.52$	$47.58 {\pm} 1.47$	$56.43 {\pm} 0.51$	$56.43 {\pm} 0.51$	$38.62{\pm}1.35$	38.76 ± 1.39	37.40 ± 1.27	$47.58 {\pm} 1.48$	$87.42{\pm}2.08$	$94.41 {\pm} 0.88$	96.38 ±1.45
E.coli	93.71±0.39	81.31±0.61	91.82±0.58	95.36±0.34	95.95±0.35	93.50±0.44	95.57±0.44	62.49±1.43	91.89±0.58	96.94±0.29	97.21±0.27	97.64 ±0.22

SEAL outperforms heuristic methods

Part I - Data Knowledge Knowledge-enhanced Graph Learning Link Prediction Based on Graph Neural Networks 56

One step further: WalkPool

SEAL average the node embedding in subgraph for link prediction

WalkPool proposes that average pooling is suboptimal. Instead, using random walk to extract structural information

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Neural Link Prediction with Walk Pooling 57

 $\mathbf{P} = \begin{pmatrix} 0 & 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 & 0 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1/2 & 0 & 1/2 & 0 \end{pmatrix}$

One step further: WalkPool

walk length Features $\tau = 2$ 1/3 $+ \frac{1}{3} \cdot \frac{1}{2} +$ $\overline{2}$ $\frac{1}{3} \cdot \frac{1}{3}$ $node_1^{\tau}$ 7,/ Use these random walk features for link $link_{1,2}^{\tau}$ $\overline{3}$ prediction via 1/2an MLP 1/3 $\mathsf{node}_1^2 + \mathsf{node}_2^2 + \mathsf{node}_3^2 + \mathsf{node}_4^2$ $\texttt{graph}^{ au}$

Part I - Data Knowledge Knowledge-enhanced Graph Learning

Neural Link Prediction with Walk Pooling 58

Graph Learning Enhanced by Knowledge from Data

Chapter summary

Knowledge can be obtained from

1) single-instance level perception

Node sampling for node positions

2) multiple-instance level perception

- Path sampling for positional and semantic information
- Subgraph sampling for community information

Data

Model

Tutorial Outline

- Preliminaries and Foundations
- Graph Learning Enhanced by Knowledge from Data
- Graph Learning Enhanced by Knowledge from Models
 - Graph Learning Enhanced by Knowledge from Humans and Domains
 - Graph Learning Enhanced by Knowledge from External Sources
 - Knowledge-enhanced Graph Learning for Real-world Applications
 - Summary and Future Directions

Models Contain Rich Knowledge

What is knowledge in models?

Learned Embeddings

Why we need to emphasize model knowledge?

Two goals: • Model Compression

• Performance Improvement

Part II - Model Knowledge Knowledge-enhanced Graph Learning

Models Contain Rich Knowledge

Deep GNNs are expensive

The more layers, the higher performance, the more expensive

Micro-f1 of GAT on Facebook

Time cost of GAT on Facebook

Part II - Model Knowledge Knowledge-enhanced Graph Learning Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks 62

Models Contain Rich Knowledge

How can we emphasize model knowledge?

Distilling knowledge from models!

Part II - Model Knowledge Knowledge-enhanced Graph Learning

Three Main Aspects:

- What to Distill
- Who to Whom
- How to Distill

Part II - Model Knowledge Knowledge-enhanced Graph Learning

What to distill?

Logits denote the inputs to the final SoftMax function and represent the soft label prediction

Embeddings are learned node embeddings from the intermediate layers of teacher models

Structures depict the connectivity and relationships between the elements in graph

Part II - Model Knowledge Knowledge-enhanced Graph Learning

Who to whom?

Offline: teacher model is pre-trained and only student model is updated Online: both the teacher model and the student model are trained end-to-end

Part II - Model Knowledge Knowledge-enhanced Graph Learning

Knowledge Distillation on Graphs: A Survey

Customized distillation enables diversified designs according to the distinct objective of tasks in different scenarios

Adaptive distillation considers the significance of teacher knowledge adaptively

Direct distillation minimizes the divergences between the knowledge of the teacher and the student directly

How to distill?

A Systematic Framework

67

A list of representative methods

Method	Objective	What to Distillate	Who to Whom	How to Distillate	Venue
TinyGNN ^[1]	Compression	Logits	$\text{GNN} \Rightarrow \text{GNN}$	Direct	KDD'20
$LSP^{[2]}$	Compression	Structures	$\text{GNN} \Rightarrow \text{GNN}$	Direct	CVPR'20
RDD ^[3]	Performance	Logits, Embs	Teacher-free	Adaptive	SIGMOD'20
$ROD^{[4]}$	Performance	Logits; Structures	Multi. GNNs $\Leftarrow \Rightarrow$ GNN	Adaptive	KDD'21

.

	1				
$GKD^{[20]}$	Compression Structures		$\mathrm{GNN} \Rightarrow \mathrm{GNN}$	Direct	NeurIPS'22
SAIL ^[21]	Performance	Embs	$\text{GNN} \Rightarrow \text{GNN}$	Direct	AAAI'22
LTE4G ^[22]	Performance	Logits	Multi. GNNs \Rightarrow GNN	Direct	CIKM'22
T2-GNN ^[23]	Performance	Logits; Embs	Multi. GNNs \Rightarrow GNN	Direct	AAAI'23
RELIANT ^[24]	Compression	Logits	$\text{GNN} \Rightarrow \text{GNN}$	Direct	SDM'23
BGNN ^[25]	Performance	Logits	Multi. GNNs \Rightarrow GNN	Adaptive	AAAI'23
NOSMOG ^[26]	Compression	Logits; Structures	$\text{GNN} \Rightarrow \text{MLP}$	Direct	ICLR'23

Part II - Model Knowledge Knowledge-enhanced Graph Learning

Covered Topics for Knowledge from Models

How to obtain knowledge from

- Logits
 Embeddings
- 3) Structures
- A recent learning strategy
 - 4) Distilling an MLP to replace GNNs

Covered Topics for Knowledge from Models

How to obtain knowledge from

- ⇒ ÷ 1)Logits
 2)Embeddings
 3)Structures
- A recent learning strategy
 - 4) Distilling an MLP to replace GNNs

Knowledge Distillation from Logits

Learning a smaller student network by mimicking the predictions of the teacher

Part II - Model Knowledge Knowledge-enhanced Graph Learning Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks 71

Knowledge Distillation from Logits

Learn a small GNN with local structure enhanced: TinyGNN

GNN Layer GNN Laver COMBINATION GNN Layer GNN Layer **GNN** Layer AGGREGATION PAM (14)(4)615 (1)(10)(6)(15)(14)(13)(d) 1-layer GNN with PAM (a) Graph (b) 2-layer GNN (c) GNN Layer (1) Target representation node **Peer-Aware Module** captures the local structure

TinyGNN: Learning Efficient Graph Neural Networks 72

Part II - Model Knowledge Knowledge-enhanced Graph Learning
Learn a small GNN with local structure enhanced: TinyGNN

- Nodes 3, 4, 5 are peer nodes to each other
- Calculate attention between peer nodes to encode local structure

Part II - Model Knowledge Knowledge-enhanced Graph Learning

TinyGNN: Learning Efficient Graph Neural Networks 73

Learn a small GNN with local structure enhanced: TinyGNN

Learning knowledge from teacher logits and ground truth labels

Part II - Model Knowledge Knowledge-enhanced Graph Learning TinyGNN: Learning Efficient Graph Neural Networks 74

Learn a small GNN with local structure enhanced: TinyGNN

Model	Facebook		Chameleon		Squirrel		AliG	AliGraph o-f1(%) Macro-f1(%) 0.34 53.75 9.98 43.45 3.77 25.22 5.30 24.88 0.19 32.05 2.34 32.37 4.72 46.97 7.81 50.40
Widdei	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)
GNN ₃ (Teacher)	89.43	88.69	39.12	38.16	30.68	30.41	60.34	53.75
GNN_2 (Base)	87.69	86.83	38.73	36.92	30.47	30.08	49.98	43.45
GNN ₁ (Base)	82.75	81.65	36.88	35.79	29.83	29.24	33.77	25.22
GNN_1 -NDS	83.32	82.11	37.46	36.42	30.73	30.38	35.30	24.88
GNN_1 -PAM	83.15	81.79	38.05	36.56	31.32	31.08	40.19	32.05
TinyGNN ₁	84.56	83.41	39.71	38.46	32.09	32.00	42.34	32.37
GNN_2 -NDS	88.90	88.15	39.51	38.21	30.98	30.52	54.72	46.97
GNN2-PAM	88.56	87.72	40.98	39.62	32.69	31.95	57.81	50.40
TinyGNN ₂	89.40	88.66	41.17	40.01	33.33	33.17	61.12	54.17

- 1 layer TinyGNN performs poorly
- 2 layers TinyGNN can outperform the 3 layers GNN teacher

Part II - Model Knowledge Knowledge-enhanced Graph Learning TinyGNN: Learning Efficient Graph Neural Networks 75

- GCN aggregates neighborhoods with predefined weights
- GAT aggregates neighborhoods using learnable weights
- GraphSage randomly samples neighbors during aggregation

Step p :

Repeat raining

Knowledge Distillation from Logits Learn a GNN from multiple GNNs: BGNN

GNN₁

GNN_{p-1}

GNN_p

* GNN_p is different from any GNN_q (q<p)

Soft

Labels

Labels

Labels

Weighted

Labels

- Distill several times, once a different GNN
- Weighted Labels encourage student to learn adaptively, by focusing more on the misclassified samples

Learn a GNN from multiple GNNs: BGNN

BGNN outperforms existing methods on multi-teacher KD

Covered Topics for Knowledge from Models

How to obtain knowledge from

1) Logits (국국: 2) Embeddings 3) Structures

A recent learning strategy

4) distilling an MLP to replace GNNs

Knowledge Distillation from Embeddings

Illustration

- Beyond learning teacher's logits, the student should also learn teacher's embeddings
- Logits contain inter-class correlations
- Embeddings contain internode correlations

Part II - Model Knowledge Knowledge-enhanced Graph Learning Compressing Deep Graph Neural Networks via Adversarial Knowledge Distillation

81

Enable the student to learn embeddings: GraphAKD

Knowledge Distillation from Embeddings

produce similarembeddings and logits • Discriminator:

distinguish the output of teacher and student

GNN Generator:

82

Enable the student to learn embeddings: GraphAKD

	Teacher			Vanilla Student			Student trained with GraphAKD			
Datasets	Model	Perf.	#Params	Model	O. Perf.	R. Perf.	Perf.	#Params	Perf. Impv. (%)	#Params Decr.
Cora	GCNII	85.5	616,519	GCN	<u>81.5</u>	78.3 ±0.9	83.6 ±0.8	96,633	2.1	84.3%
CiteSeer	GCNII	73.4	5,144,070	GCN	<u>71.1</u>	68.6 ± 1.1	72.9 ± 0.4	1,016.156	1.8	80.2%
PubMed	GCNII	80.3	1,177,603	GCN	<u>79.0</u>	78.1 ± 1.0	81.3 ± 0.4	195,357	2.3	83.4%
Flickr	GCNII	56.20	1,182,727	GCN	49.20	<u>49.63</u> ±1.19	52.95 ±0.24	196,473	3.32	83.4%
Arxiv	GCNII	72.74	2,148,648	GCN	<u>71.74</u>	71.43 ± 0.13	73.05 ± 0.22	242,426	1.31	88.7%
Reddit	GCNII	96.77	691,241	GCN	93.30	94.12 ± 0.04	95.15 ± 0.02	234,655	1.03	66.1%
Yelp	GCNII	65.14	2,306,660	Cluster-GCN	59.15	<u>59.63</u> ±0.51	60.63 ± 0.42	431,950	1.00	81.3%
Products	GAMLP	84.59	3,335,831	Cluster-GCN	<u>76.21</u>	74.99 ± 0.76	81.45 ± 0.47	682,449	5.24	79.5%

- Better performance than vanilla student, but perform poorly than the teacher
- Smaller model size (parameters decreased by ~80%)

Knowledge Distillation from Embeddings

Enable the student to learn embeddings: GraphAKD

	#Par	ams	GPU Memory			Inference time		
Datasets	Teacher	Student	Teacher	Student		Teacher	Student	
Cora	0.6M	0.1M	0.22G	0.03G		40.3ms	4.1ms	
PubMed	1.2M	0.2M	1.23G	0.33G		57.3ms	5.7ms	
Flickr	1.2M	0.2M	2.79G	1.49G		309.7ms	11.9ms	
Yelp	2.3M	0.4M	6.28G	4.73G		3.0s	1.5s	
Products	3.3M	0.7M	6.25G	6.20G		16.1s	7.0s	

Reduced GPU memory; Faster inference time

Enable the student to learn embeddings: GraphAKD

	Datasets	Cora	PubMed	Flickr	Yelp	Products	Molhiv
	Teacher	85.5	80.3	56.20	65.14	84.59	84.03
	Student	81.5	79.0	49.20	59.15	76.21	75.58
Embeddings	Only D_e	82.9	80.6	52.20	59.63	81.13	78.28
Logits	Only D_ℓ	82.3	81.0	52.52	60.03	79.76	78.09
	GraphAKD	83.6	81.3	52.95	60.63	81.45	79.16

Ablation studies on the learning impacts

- Learning from embeddings is beneficial
- Combining the learning from embeddings and logits is even better

Covered Topics for Knowledge from Models

How to obtain knowledge from

1) Logits 2) Embeddings ≓∹ 3) Structures

A recent learning strategy

4) distilling an MLP to replace GNNs

Knowledge Distillation from Structures Illustration

The student should also learn graph structural and topology information from the teacher

Part II - Model Knowledge Knowledge-enhanced Graph Learning Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks 86

Enable the student to capture the local structure: LSP

- 1st step: compute the distribution of the local structure for each node (denoted by node similarity to each other)
- 2nd step: match the distributions of the teacher with that of the student

Enable the student to capture the local structure: LSP

-	Model Layers		Attention h	eads Hid	den features	—
Madal dataila: CAT	Teacher	3	4,4,6	2:	56,256,121	_
Model details. GAT	Student	5	2,2,2,2,	2 68,	68,68,68,121	_
						_
-	M	odel	Params	RunTime	Training	F1 Score
	Teacher		3.64M	48.5ms	1.7s/3.4G	97.6
-	Student_Full		0.16M	41.3ms	1.3s/1.2G	95.7
	Student_KD [14]		-	-	-	-
Node classification on PPI	Student	_AT [47]	0.16M	41.3ms	1.9s/1.4G	95.4
	Student_FitNet [31]		0.16M	41.3ms	2.4s/1.6G	95.6
	Student_LSP (Ours)		0.16M	41.3ms	2.0s/1.5G	96.1

Reduced parameters; Comparable F1 to the teacher

Part II - Model Knowledge Knowledge-enhanced Graph Learning Distilling Knowledge from Graph Convolutional Networks 88

Knowledge Distillation from Structures The strategy of LSP

Considering pairwise relationships, but not considering latent interactions among disconnected nodes.

Knowledge Distillation from Structures

One step further: enhance the student with global structure

- Global Structure Preserving (GSP): consider all possible pairwise similarities among node features
 - Challenging to optimize/scale up due to an explosion of possible pairs

On Representation Knowledge Distillation for Graph Neural Networks

Enhance the student with implicit global structure: G-CRD

Knowledge Distillation from Structures

- Use contrastive learning to capture implicit global topology
- Positive pair: same node embeddings of the teacher and the student
- Negative pair: random nodes

91

Knowledge Distillation from Structures

Enhance the student with implicit global structure: G-CRD

Tea	cher (#Layer,#Param):	GIN-E (5L,3.3M)	PNA (5L,2.4M)	GIN-E (5L,3.3M)	PNA (5L,2.4M)	PNA (5L,2.4M)
Stu	dent (#Layer,#Param):	GCN (2L,15K)	GCN (2L,15K)	GCN (2L,40K)	GCN (2L,40K)	GIN (2L,10K)
Sup.	Supervised Teacher Supervised Student	$\begin{array}{c} 77.69 \pm 1.61 \\ 73.02 \pm 1.46 \end{array}$	$\begin{array}{c} 77.48 \pm 1.71 \\ 73.02 \pm 1.46 \end{array}$	$\begin{array}{c} 77.69 \pm 1.61 \\ 73.65 \pm 1.50 \end{array}$	$\begin{array}{c} 77.48 \pm 1.71 \\ 73.65 \pm 1.50 \end{array}$	$\begin{array}{c} 77.48 \pm 1.71 \\ 73.03 \pm 2.02 \end{array}$
ation	KD [30] FitNet [47] AT [48]	$\frac{74.08}{73.62 \pm 1.05} (\downarrow)$ 73.85 ±0.85 (↓)	$\frac{74.13}{73.65} \pm 1.72$ 73.65 ± 1.25 (\downarrow) 73.64 ± 1.50 (\downarrow)	$\frac{75.25}{74.52} \pm 1.71$ 74.52 ±1.33 (\downarrow) 74.94 ±0.97 (\downarrow)	74.45 ±1.27 74.39 ±1.46 (↓) 73.89 ±1.92 (↓)	73.42 ±2.14 72.88 ±0.89 (↓) 73.87 ±2.28 (↑)
Distill	LSP [32]	73.58 \pm 1.29 (\downarrow)	73.24 \pm 1.67 (\downarrow)	75.04 \pm 1.20 (\downarrow)	74.43 ± 1.58 (\downarrow)	70.74 \pm 1.82 (\downarrow)
	GSP	72.83 \pm 1.30 (\downarrow)	73.74 \pm 0.93 (\downarrow)	75.12 \pm 1.27 (\downarrow)	<u>75.09</u> ± 1.48 (\uparrow)	69.68 \pm 2.88 (\downarrow)
	G-CRD (Ours)	74.34 \pm 1.44 (\uparrow)	75.11 \pm 0.73 (\uparrow)	75.53 \pm 1.64 (\uparrow)	75.89 ± 0.80 (\uparrow)	75.77 \pm 2.02 (\uparrow)

Molecular graph classification on MOLHIV

- LSP performs poorly: preserving local structure is not sufficient
- GSP performs poorly: preserving every possible pair of nodes contributes less
- G-CRD performs well: preserving the implicit global structure is beneficial

Covered Topics for Knowledge from Models

How to obtain knowledge from

- Logits
 Embeddings
- 3) Structures
- A recent learning strategy
- (ج الج 4) distilling an MLP to replace GNNs

Distilling an MLP to Replace GNNs The majority of KD on Graphs focus on GNN to GNN

Inherent limitation: Dependence on message passing architecture, which is time-consuming and computation-intensive, making the model inapplicable to time-sensitive situations Part II - Model Knowledge Knowledge-enhanced Graph Learning

To avoid the troublesome message passing

Distilling knowledge to an MLP (Multi-layer Perceptron), which is simple and does not require message passing

Part II - Model Knowledge Knowledge-enhanced Graph Learning Graph-less Neural Networks: Teaching 95 Old MLPs New Tricks via Distillation

Distilling an MLP to Replace GNNs Distilling knowledge to an MLP: GLNN

Distilling knowledge to an MLP: GLNN

GLNN performs well on small datasets, but performs poorly on large datasets

Problems of simply distilling knowledge to an MLP

- The misalignment between content feature and label spaces
- The strict hard matching to teacher's output
- The sensitivity to node feature noises

Therefore, a question can be asked:

Can we learn MLPs that are <u>graph structure-aware</u> in both the feature and representation spaces, <u>insensitive</u> to node feature noises, and have <u>superior performance</u> as well as <u>fast</u> inference speed?

Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

• Distill Knowledge of Logits

Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

- Distill Knowledge of Logits
- Distill Knowledge of Learned
 Embedding and Structure

Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

- Distill Knowledge of Logits
- Distill Knowledge of Learned Embedding and Structure
- Learning Knowledge of Node Positions from Data

Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

- Distill Knowledge of Logits
- Distill Knowledge of Learned Embedding and Structure
- Learning Knowledge of Node
 Positions from Data
- Enhance Knowledge Acquisition with Augmentation

Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

Datasets	SAGE	MLP	GLNN	NOSMOG	Δ_{GNN}	Δ_{MLP}	Δ_{GLNN}
Cora Citeseer Pubmed A-computer A-photo Arxiv Products	$\begin{array}{c} 80.64 \pm 1.57 \\ 70.49 \pm 1.53 \\ 75.56 \pm 2.06 \\ 82.82 \pm 1.37 \\ 90.85 \pm 0.87 \\ 70.73 \pm 0.35 \\ 77.17 \pm 0.32 \end{array}$	$\begin{array}{c} 59.18 \pm 1.60 \\ 58.50 \pm 1.86 \\ 68.39 \pm 3.09 \\ 67.62 \pm 2.21 \\ 77.29 \pm 1.79 \\ 55.67 \pm 0.24 \\ 60.02 \pm 0.10 \end{array}$	$\begin{array}{c} 80.26 \pm 1.66 \\ 71.22 \pm 1.50 \\ 75.59 \pm 2.46 \\ 82.71 \pm 1.18 \\ 91.95 \pm 1.04 \\ 63.75 \pm 0.48 \\ 63.71 \pm 0.31 \end{array}$	$\begin{array}{c} 83.04 \pm 1.26 \\ 73.78 \pm 1.54 \\ 77.34 \pm 2.36 \\ 84.04 \pm 1.01 \\ 93.36 \pm 0.69 \\ 71.65 \pm 0.29 \\ 78.45 \pm 0.38 \end{array}$	 ↑ 2.98% ↑ 4.67% ↑ 2.36% ↑ 1.47% ↑ 2.76% ↑ 1.30% ↑ 1.66% 	 ↑ 40.32% ↑ 26.12% ↑ 13.09% ↑ 24.28% ↑ 20.79% ↑ 28.70% ↑ 30.71% 	↑ 3.46% ↑ 3.59% ↑ 2.32% ↑ 1.61% ↑ 1.53% ↑ 12.39% ↑ 23.14%

+2.46% +26.29% +6.86%

NOSMOG achieves the best performance

Part II - Model Knowledge Knowledge-enhanced Graph Learning Learning MLPs on Graphs: A Unified View of 103 Effectiveness, Robustness, and Efficiency

Learn a Noise-robust Structure-aware MLPs On Graphs: NOSMOG

NOSMOG is 833x faster than GNNs

Part II - Model Knowledge Knowledge-enhanced Graph Learning NOSMOG is as robust as GNNs

Learning MLPs on Graphs: A Unified View of 104 Effectiveness, Robustness, and Efficiency

Part II - Model Knowledge Knowledge-enhanced Graph Learning

Graph Learning Enhanced by Knowledge from Models

Chapter summary

How to obtain knowledge from

Logits
 Embeddings

3) Structures

A recent learning strategy

4) distilling an MLP to replace GNNs

Tutorial Outline

- Preliminaries and Foundations
- Graph Learning Enhanced by Knowledge from Data
- Graph Learning Enhanced by Knowledge from Models
- Graph Learning Enhanced by Knowledge from Humans and Domains
 - Graph Learning Enhanced by Knowledge from External Sources
 - Knowledge-enhanced Graph Learning for Real-world Applications
 - Summary and Future Directions

Graph learning enhanced by human feedback

• Graph active learning with human knowledge

Graph learning enhanced by domain knowledge

Chemistry domain knowledge for molecular property prediction

Graph learning enhanced by human feedback

Graph active learning with human knowledge

Graph learning enhanced by domain knowledge

Chemistry domain knowledge for molecular property prediction
What is graph active learning?

Chooses graph data examples to label from a large pool of unlabeled data repeatedly:

- training a model on the small pool of labeled graph data
- selecting graph data examples to label based on different query heuristics

Why do we need graph active learning?

- Incorporating human knowledge
- Reduce the annotation cost by focusing on the most relevant graph data examples

Incorporating accurate human knowledge: ALG

In this setting, ground truth labels that are one-hot encoding serve as accurate human knowledge

Part III - Human Knowledge Knowledge-enhanced Graph Learning ALG: Fast and Accurate Active Learning Framework for Graph Convolutional Networks

Incorporating accurate human knowledge: ALG

- An adaptive measurement component that computes the node importance, and a selection component to choose a set of nodes to label given their importance
- Measurement component: K-means-based. Center nodes in clusters are more representative
- Selection component: the model should select nodes from each cluster for fairness

Part III - Human Knowledge Knowledge-enhanced Graph Learning

Incorporating accurate human knowledge: ALG

- When labeling more nodes, ALG quickly boosts its accuracy at the beginning and consistently outperforms the baselines
- ALG only needs to label about 5% of all the nodes in Cora to achieve the accuracy of 83.5%, which is comparable to the performance trained on the full dataset (a gap <3%)

Graph Active Learning

Part III - Human Knowledge Knowledge-enhanced Graph Learning

Graph Active Learning

Problem of using accurate human knowledge

Exact labeling task (for ground truth labels) is costly, especially when the categorization task is specialized and strongly depend on the oracle expertise

Human knowledge as soft label: IGP

- A domain expert only judges the correctness of the predicted labels (a binary question) rather than identifying the exact class (a multi-class question)
- If the model prediction is incorrect, the node is annotated with the soft label by re-normalizing the model outputs over the remaining classes

Human knowledge as soft label: IGP

IGP measures the expected information gain of labeling each node and selects a batch of nodes that can maximize the information gain propagation on the graph

The oracle only needs to judge the correctness of the generated label

Human knowledge as soft label: IGP

Part III - Human Knowledge Knowledge-enhanced Graph Learning Information Gain Propagation: a New Way to Graph Active Learning with Soft Labels

117

Open world scenario: OWGAL

- Existing GAL methods mainly focus on a "closed-world" setting, where all nodes belong to a fixed known group of classes
- In the open world scenario, a graph develops over time as new nodes, edges, and classes are introduced, and thus GAL is required to make a fair selection among all nodes for labeling, despite its class has been seen or not

Open-world graph active learning (OWGAL) should not only select the most informative nodes, but uncover nodes of latent new classes

Part III - Human Knowledge Knowledge-enhanced Graph Learning Open-World Graph Active 118 Learning for Node Classification

Open world scenario: OWGAL

To make known and unknown classes more identifiable, learn more compact representations for nodes in the same class, and push known classes as far away from each other as possible

Part III - Human Knowledge Knowledge-enhanced Graph Learning

Open-World Graph Active 119 Learning for Node Classification

Open world scenario: OWGAL

Label propagation: motivated by the homophily assumption that adjacent nodes tend to have the same label, node v is more likely to belong to a novel class if no labeled node reach it within K steps of random walks on graph

Part III - Human Knowledge Knowledge-enhanced Graph Learning

Open-World Graph Active 120 Learning for Node Classification

Open world scenario: OWGAL

Unify the discovery of unknown classes and important nodes, as it weighs unseen-class nodes as much as the nodes near the decision boundary, both of which have high uncertainty scores and should be sampled for labeling

Part III - Human Knowledge Knowledge-enhanced Graph Learning Open-World Graph Active 121 Learning for Node Classification

Open world scenario: OWGAL

Baselines	Amazon-Computer		Amazoı	n-Photo	Coaut	hor-CS	Coauthor-Physics		
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
Random	$82.51 \pm 1.77\%$	$74.16 \pm 2.90\%$	$89.88 \pm 1.55\%$	$86.65 \pm 2.94\%$	$88.25 \pm 0.34\%$	$80.18 \pm 1.03\%$	$91.43 \pm 1.01\%$	$87.50 \pm 1.83\%$	
AGE	$80.12 \pm 2.24\%$	$70.94 \pm 3.08\%$	$90.35 \pm 0.87\%$	$89.17 \pm 1.32\%$	$89.08 \pm 1.69\%$	$82.69 \pm 2.05\%$	$91.76 \pm 2.30\%$	$88.08 \pm 3.99\%$	
ANRMAB	$79.57 \pm 1.53\%$	$69.28 \pm 2.77\%$	$89.63 \pm 0.53\%$	$88.55 \pm 1.07\%$	$89.87 \pm 1.32\%$	$82.33 \pm 1.55\%$	$90.96 \pm 2.02\%$	$87.68 \pm 1.82\%$	
GPA	$82.92 \pm 1.45\%$	$75.31 \pm 3.71\%$	$91.59 \pm 0.41\%$	$90.75 \pm 0.45\%$	$88.89 \pm 1.51\%$	$85.78 \pm 1.82\%$	$91.08 \pm 1.49\%$	$87.86 \pm 2.22\%$	
ALG	$79.83 \pm 1.85\%$	$64.79 \pm 5.91\%$	$80.61 \pm 1.30\%$	$83.58 \pm 2.64\%$	$85.97 \pm 0.09\%$	$72.01 \pm 0.19\%$	$90.86 \pm 0.28\%$	$87.96 \pm 0.74\%$	
IGP-hard	$65.72 \pm 2.37\%$	$31.92 \pm 1.55\%$	$81.47 \pm 1.61\%$	$80.23 \pm 1.71\%$	$82.34 \pm 0.23\%$	$59.51 \pm 0.43\%$	$85.92 \pm 1.42\%$	$65.28 \pm 3.66\%$	
AGE+OpenWGL	$84.21 \pm 0.27\%$	$76.24 \pm 1.05\%$	$91.33 \pm 1.14\%$	$90.00 \pm 1.36\%$	$88.03 \pm 0.19\%$	$76.26 \pm 0.51\%$	$92.79 \pm 0.34\%$	$89.74 \pm 0.54\%$	
AGE+GPN	$80.01 \pm 2.22\%$	$68.57 \pm 4.10\%$	$89.93 \pm 0.52\%$	$88.98 \pm 0.62\%$	$90.16 \pm 0.09\%$	$87.03 \pm 0.25\%$	$92.92 \pm 0.19\%$	$90.11 \pm 0.23\%$	
OWGAL (Ours)	$\textbf{86.39} \pm \textbf{1.20\%}$	$\textbf{80.79} \pm \textbf{2.80\%}$	$93.09 \pm 0.61\%$	$91.71 \pm \mathbf{0.79\%}$	$\textbf{91.42} \pm \textbf{0.4\%}$	$\textbf{88.77} \pm \textbf{0.5\%}$	$\textbf{93.11} \pm \textbf{0.28\%}$	$90.36 \pm 0.62\%$	

Baselines	Ar	xiv	Ree	ldit	Products		
Dusennes	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
Random	$62.53 \pm 0.74\%$	$33.79 \pm 1.12\%$	$85.54 \pm 0.94\%$	$70.47 \pm 2.25\%$	$63.61 \pm 0.68\%$	$22.89 \pm 0.59\%$	
AGE	$61.44 \pm 0.38\%$	$31.91 \pm 1.44\%$	$78.40 \pm 0.43\%$	$55.39 \pm 1.09\%$	$62.48 \pm 1.04\%$	$23.29 \pm 0.69\%$	
ANRMAB	$61.85 \pm 0.54\%$	$30.67 \pm 1.83\%$	$77.40 \pm 0.58\%$	$56.12 \pm 1.36\%$	$62.55 \pm 0.93\%$	$23.07 \pm 0.83\%$	
GPA	$58.59 \pm 0.34\%$	$31.34 \pm 0.98\%$	$85.00 \pm 1.52\%$	$69.65 \pm 5.96\%$	$58.35 \pm 1.06\%$	$21.22 \pm 0.25\%$	
ALG	$59.71 \pm 0.50\%$	$22.36 \pm 1.28\%$	$86.14 \pm 0.67\%$	$68.55 \pm 1.27\%$	$63.59 \pm 0.88\%$	$21.63 \pm 0.67\%$	
IGP-hard	$56.35 \pm 3.58\%$	$22.92 \pm 2.74\%$	$77.37 \pm 0.58\%$	$49.21 \pm 2.37\%$	$59.97 \pm 0.97\%$	$21.31 \pm 0.77\%$	
AGE+OpenWGL	$62.27 \pm 0.12\%$	$33.85 \pm 0.39\%$	$82.14 \pm 1.04\%$	$67.35 \pm 3.09\%$	$58.89 \pm 0.85\%$	$22.31 \pm 0.85\%$	
AGE+GPN	$61.34 \pm 0.38\%$	$31.14 \pm 0.82\%$	$74.73 \pm 1.37\%$	$48.62 \pm 2.91\%$	$56.72 \pm 0.73\%$	$21.13 \pm 0.94\%$	
OWGAL (Ours)	$63.32 \pm \mathbf{0.49\%}$	$38.23 \pm 0.62\%$	$88.41 \pm \mathbf{0.71\%}$	$80.12 \pm 1.35\%$	$66.46 \pm 0.79\%$	$\textbf{27.15} \pm \textbf{0.63\%}$	

Better performance on node classification

Part III - Human Knowledge Knowledge-enhanced Graph Learning Open-World Graph Active 122 Learning for Node Classification

Open world scenario: OWGAL

OWGAL achieves the best performance across different budgets

Graph learning enhanced by human feedback

• Graph active learning with human knowledge

Graph learning enhanced by domain knowledge

Chemistry domain knowledge for molecular property prediction

Molecular Graphs

Molecules can be represented as a graph

Encode molecules in a self-supervised way: GROVER

(Task 1) Contextual property prediction: predict the context-aware properties of the target node/edge within some local subgraph

(Task 2) Motif prediction: functional groups, as one important class of motifs in molecules, encode the rich domain knowledge of molecules

Domain Knowledge for Molecular Property Prediction

Encode molecules in a self-supervised way: GROVER

Classification (Higher is better)									
Dataset	BBBP	SIDER	ClinTox	BACE	Tox21	ToxCast			
# Molecules	2039	1427	1478	1513	7831	8575			
TF_Robust [40]	$0.860_{(0.087)}$	$0.607_{(0.033)}$	$0.765_{(0.085)}$	$0.824_{(0.022)}$	$0.698_{(0.012)}$	$0.585_{(0.031)}$			
GraphConv [24]	$0.877_{(0.036)}$	$0.593_{(0.035)}$	$0.845_{(0.051)}$	$0.854_{(0.011)}$	$0.772_{(0.041)}$	$0.650_{(0.025)}$			
Weave [23]	$0.837_{(0.065)}$	$0.543_{(0.034)}$	$0.823_{(0.023)}$	$0.791_{(0.008)}$	$0.741_{(0.044)}$	$0.678_{(0.024)}$			
SchNet [45]	$0.847_{(0.024)}$	$0.545_{(0.038)}$	$0.717_{(0.042)}$	$0.750_{(0.033)}$	$0.767_{(0.025)}$	$0.679_{(0.021)}$			
MPNN [13]	$0.913_{(0.041)}$	$0.595_{(0.030)}$	$0.879_{(0.054)}$	$0.815_{(0.044)}$	$0.808_{(0.024)}$	$0.691_{(0.013)}$			
DMPNN [63]	$0.919_{(0.030)}$	$0.632_{(0.023)}$	$0.897_{(0.040)}$	$0.852_{(0.053)}$	$0.826_{(0.023)}$	$0.718_{(0.011)}$			
MGCN [30]	$0.850_{(0.064)}$	$0.552_{(0.018)}$	$0.634_{(0.042)}$	$0.734_{(0.030)}$	$0.707_{(0.016)}$	$0.663_{(0.009)}$			
AttentiveFP [61]	$0.908_{(0.050)}$	$0.605_{(0.060)}$	$0.933_{(0.020)}$	$0.863_{(0.015)}$	$0.807_{(0.020)}$	$0.579_{(0.001)}$			
N-GRAM [29]	$0.912_{(0.013)}$	$0.632_{(0.005)}$	$0.855_{(0.037)}$	$0.876_{(0.035)}$	$0.769_{(0.027)}$	_4			
HU. et.al[18]	$0.915_{(0.040)}$	$0.614_{(0.006)}$	$0.762_{(0.058)}$	$0.851_{(0.027)}$	$0.811_{(0.015)}$	$0.714_{(0.019)}$			
GROVER _{base}	$0.936_{(0.008)}$	0.656(0.006)	$0.925_{(0,013)}$	$0.878_{(0.016)}$	$0.819_{(0,020)}$	$0.723_{(0,010)}$			
GROVER _{large}	$0.940_{(0.019)}$	$0.658_{(0.023)}$	$0.944_{(0.021)}$	$0.894_{(0.028)}$	$0.831_{(0.025)}$	$0.737_{(0.010)}$			

GROVER achieves the best performance on all datasets compared with existing molecular property predicting methods

Part III - Human Knowledge Knowledge-enhanced Graph Learning Self-Supervised Graph Transformer 129 on Large-Scale Molecular Data

Domain Knowledge for Molecular Property Prediction

Encode molecules in a self-supervised way: GROVER

	GROVER	No Pretrain	Abs. Imp.
BBBP (2039)	0.940	0.911	+0.029
SIDER (1427)	0.658	0.624	+0.034
ClinTox (1478)	0.944	0.884	+0.060
BACE (1513)	0.894	0.858	+0.036
Tox21 (7831)	0.831	0.803	+0.028
ToxCast (8575)	0.737	0.721	+0.016
Average	0.834	0.803	+0.038

Self-supervised pre-training strategy can learn the implicit domain knowledge and enhance the prediction performance

Part III - Human Knowledge Knowledge-enhanced Graph Learning

Domain Knowledge for Molecular Property Prediction

One step further, generating motifs for molecules: MGSSL

A motif vocabulary can be built via these 3 steps preprocessing

to reduce the redundancy of motifs 3) construct motif trees from molecule graphs

Multiple pre-training strategies: 1) reconstruct the masked atom and bond, 2) use the generated motif for motif generative pretraining

Part III - Human Knowledge Knowledge-enhanced Graph Learning

Domain Knowledge for Molecular Property Prediction

One step further, generating motifs for molecules: MGSSL

Motif-based Graph Self-Supervised Learning 132 for Molecular Property Prediction

One step further, generating motifs for molecules: MGSSL

SSL methods	muv	clintox	sider	hiv	tox21	bace	toxcast	bbbp	Avg.
No pretrain	71.7 ± 2.3	58.2 ± 2.8	57.2 ± 0.7	$75.4 {\pm} 1.5$	$74.3 {\pm} 0.5$	$70.0 {\pm} 2.5$	63.3 ± 1.5	65.5 ± 1.8	67.0
Infomax	75.1 ± 2.8	73.0 ± 3.2	58.2 ± 0.5	76.5 ± 1.6	$75.2 {\pm} 0.3$	75.6 ± 1.0	$62.8 {\pm} 0.6$	68.1 ± 1.3	70.6
Attribute masking	74.7 ± 1.9	77.5 ± 3.1	59.6 ± 0.7	77.9 ± 1.2	77.2 ± 0.4	78.3 ± 1.1	63.3 ± 0.8	$65.6 {\pm} 0.9$	71.8
GCC	74.1 ± 1.4	73.2 ± 2.6	58.0 ± 0.9	$75.5 {\pm} 0.8$	$76.6 {\pm} 0.5$	75.0 ± 1.5	63.5 ± 0.4	66.9 ± 0.7	70.4
GPT-GNN	$75.0 {\pm} 2.5$	$74.9 {\pm} 2.7$	59.3 ± 0.8	77.0 ± 1.7	$76.1 {\pm} 0.4$	$78.5 {\pm} 0.9$	63.1 ± 0.5	67.5 ± 1.3	71.4
Grover	75.8 ± 1.7	$76.9 {\pm} 1.9$	$60.7 {\pm} 0.5$	$77.8 {\pm} 1.4$	76.3 ± 0.6	79.5 ± 1.1	$63.4 {\pm} 0.6$	$68.0 {\pm} 1.5$	72.3
MGSSL (DFS)	78.1 ± 1.8	79.7 ± 2.2	60.5 ± 0.7	79.5 ±1.1	$76.4 {\pm} 0.4$	79.7±0.8	$63.8 {\pm} 0.3$	70.5 ± 1.1	73.5
MGSSL (BFS)	78.7±1.5	80.7 ± 2.1	61.8±0.8	$78.8 {\pm} 1.2$	76.5 ± 0.3	$79.1 {\pm} 0.9$	64.1±0.7	$69.7 {\pm} 0.9$	73.7

MGSSL achieves the best performance, demonstrating the effectiveness learning from generated motifs

Topics for Knowledge from Humans and Domains Chapter summary

Graph learning enhanced by human feedback

• Graph active learning with human knowledge

Graph learning enhanced by domain knowledge

 Chemistry domain knowledge for molecular property prediction

AAAI-24 Tutorial Feb 2024, Vancouver

Q & A

Tutorial Website:

yijuntian.com/tutorial

Knowledge-enhanced Graph Learning

Tutorial Outline

- Preliminaries and Foundations
- Graph Learning Enhanced by Knowledge from Data
- Graph Learning Enhanced by Knowledge from Models
- Graph Learning Enhanced by Knowledge from Humans and Domains
- Sources Graph Learning Enhanced by Knowledge from External Sources
 - Knowledge-enhanced Graph Learning for Real-world Applications
 - Summary and Future Directions

Knowledge from External Sources

Topics for Knowledge from External Sources

Graph learning on text-rich graphs

- Graph learning on textual-node graphs
- Graph learning on textual-edge graphs

Graph learning on knowledge graphs

- Knowledge Graph Embedding
- Advancing KG tasks with text data

What are textual-node graphs?

- A text-rich network contains a node set, an edge set, and a text set
- Each node is associated with some textual information

ID	Document Text
1	Privacy preservation in wireless sensor
2	Tabu search for the Steiner problem
3	Feature interaction: a critical review
4	A study of malware in P2P networks
5	Understanding the paradoxical effects

Why do we need text-rich graphs?

- Text-rich graphs provide additional context and explanation to graphs
- Text allows for modeling the latent correlation between nodes

ID	Document Text
1	Privacy preservation in wireless sensor
2	Tabu search for the Steiner problem
3	Feature interaction: a critical review
4	A study of malware in P2P networks
5	Understanding the paradoxical effects

Pretraining-finetuning on textual-node graphs: Patton

Network-contextualized Masked Language Modeling: mask several tokens in the text sequence and utilizes the surrounding unmasked tokens to predict them

Masked Node Prediction:

Predict the masked nodes based on the adjacent network structure

141

Pretraining-finetuning on text-rich graphs: Patton

	Method	Mathe Macro-F1	matics Micro-F1	Geo Macro-F1	logy Micro-F1	Econo Macro-F1	omics Micro-F1	Clot Macro-F1	thes Micro-F1	Spo Macro-F1	orts Micro-F1
	BERT GraphFormers	$\frac{18.14_{0.07}}{18.69_{0.52}}$	$\begin{array}{c} 22.04_{0.32} \\ 23.24_{0.46} \end{array}$	$21.97_{0.87} \\ 22.64_{0.92}$	$29.63_{0.36} \\ 31.02_{1.16}$	$\frac{14.17_{0.08}}{13.68_{1.03}}$	$\frac{19.77_{0.12}}{19.00_{1.44}}$	$\begin{array}{c} 45.10_{1.47} \\ 46.27_{1.92} \end{array}$	$\begin{array}{c} 68.54_{2.25} \\ 68.97_{2.46} \end{array}$	$\frac{31.88_{0.23}}{43.77_{0.63}}$	$\frac{34.58_{0.56}}{50.47_{0.78}}$
Off-the-shelf	SciBERT SPECTER SimCSE (unsup)	$\frac{23.50_{0.64}}{23.37_{0.07}}\\20.12_{0.08}$	$\begin{array}{c} 23.10_{2.23} \\ 29.83_{0.96} \\ 26.11_{0.39} \end{array}$	$\begin{array}{c} 29.49_{1.25} \\ 30.40_{0.48} \\ 38.78_{0.19} \end{array}$	$37.82_{1.89}\ 38.54_{0.77}\ 38.55_{0.17}$	$15.91_{0.48}$ $16.16_{0.17}$ $14.54_{0.26}$	$\frac{21.32_{0.66}}{19.84_{0.47}}\\19.07_{0.43}$	- - 42.70 _{2.32}	- - 58.72 _{0.34}	- - 41.91 _{0 85}	- - 59.19 _{0 55}
	SimCSE (sup) LinkBERT	$20.39_{0.07} \\ 15.78_{0.91}$	$25.56_{0.00} \\ 19.75_{1.19}$	$25.66_{0.28} \\ 24.08_{0.58}$	$33.89_{0.40} \\ 31.32_{0.04}$	$\frac{15.03_{0.53}}{12.71_{0.12}}$	$\frac{18.64_{1.32}}{16.39_{0.22}}$	$52.82_{0.87} \\ 44.94_{2.52}$	$75.54_{0.98} \\ 65.33_{4.34}$	$\frac{46.69_{0.10}}{35.60_{0.33}}$	$59.19_{0.55} \\ 38.30_{0.09}$
Continuous	BERT.MLM SciBERT.MLM SimCSE.in-domain	$\begin{array}{c} 23.44_{0.39} \\ 23.34_{0.42} \\ 25.15_{0.09} \end{array}$	$\begin{array}{c} 31.75_{0.58} \\ 30.11_{0.97} \\ 29.85_{0.20} \end{array}$	$\frac{36.31_{0.36}}{36.94_{0.28}}\\38.91_{0.08}$	$\begin{array}{c} 48.04_{0.69} \\ 46.54_{0.40} \\ 48.93_{0.14} \end{array}$	$\frac{16.60_{0.21}}{16.28_{0.38}}\\18.08_{0.22}$	$\begin{array}{c} 22.71_{1.16} \\ 21.41_{0.81} \\ 23.79_{0.44} \end{array}$	46.98 _{0.84} - 57.03 _{0.20}	68.00 _{0.84} - 80.16 _{0.31}	$62.21_{0.13}$ - $65.57_{0.35}$	$75.43_{0.74}$ - $75.22_{0.18}$
method	PATTON SciPATTON	$27.35_{0.03}$ $27.35_{0.04}$	$32.82_{0.01}$ $31.70_{0.01}$	39.35 _{0.06} 39.65 _{0.10}	48.19 _{0.15} 48.93 _{0.06}	19.32 _{0.05} 19.91 _{0.08}	$25.12_{0.05}$ 25.68 _{0.32}	60.14 _{0.28}	84.88 _{0.09}	67.57 _{0.08}	78.60 _{0.15}
	w/o NMLM w/o MNP	$ \begin{array}{r} \overline{25.91_{0.45}} \\ 24.79_{0.65} \end{array} $	$\begin{array}{r} 27.79_{2.07} \\ 29.44_{1.50} \end{array}$	$\frac{38.78_{0.19}}{38.00_{0.73}}$	$ \begin{array}{r} 48.48_{0.17} \\ 47.82_{1.06} \end{array} $	$\frac{18.86_{0.23}}{18.69_{0.59}}$	$\begin{array}{c} 2\bar{4}.\bar{2}\bar{5}_{0.26} \\ 2\bar{5}.6\bar{3}_{1.44} \end{array}$	$56.68_{0.24} \\ 47.35_{1.20}$		$\begin{array}{c} 65.83_{0.28} \\ 64.23_{1.53} \end{array}$	$\begin{array}{r} 76.24_{0.54} \\ 76.03_{1.67} \end{array}$

Consistently better

Part IV - External Knowledge Knowledge-enhanced Graph Learning PATTON: Language Model 142 Pretraining on Text-Rich Networks

Heterogeneous text-rich graphs

A heterogeneous network includes the sets of nodes, edges, node types, and edge types.

Part IV - External Knowledge Knowledge-enhanced Graph Learning Heterformer: Transformer-based Deep Node Representation 143 Learning on Heterogeneous Text-Rich Networks

Learn on heterogeneous text-rich networks: Heterformer

Heterformer is a network-empowered Transformer

Part IV - External Knowledge Knowledge-enhanced Graph Learning Heterformer: Transformer-based Deep Node Representation 144 Learning on Heterogeneous Text-Rich Networks

Transformer-based Text-Rich Node Encoding

Part IV - External Knowledge Knowledge-enhanced Graph Learning Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks

145

Graph Learning on Textual-node Graphs

Learn on heterogeneous text-rich networks: Heterformer

Method		PREC	DBLP MRR	NDCG	PREC	Twitter MRR	NDCG	PREC	Goodreads MRR	NDCG
	MeanSAGE BERT	0.7019 0.7569	0.7964 0.8340	0.8437 0.8726	0.6489	0.7450	0.7991 0.8265	0.6302	0.7409	0.8001
Homo GNN	BERT+MeanSAGE BERT+MAXSAGE BERT+GAT GraphFormers	0.8131 0.8193 0.8119 0.8324	0.8779 0.8825 0.8771 0.8916	0.9070 0.9105 0.9063 0.9175	0.7201 0.7198 0.7231 0.7258	0.7845 0.7845 0.7873 0.7891	0.8275 0.8276 0.8300 0.8312	0.7301 0.7280 0.7333 0.7444	0.8167 0.8164 0.8170 0.8260	0.8594 0.8593 0.8593 0.8665
Hetero GNN	BERT+RGCN BERT+HAN BERT+HGT BERT+SHGN GraphFormers++	0.7979 0.8136 0.8170 0.8149 0.8233	0.8633 0.8782 0.8814 0.8785 0.8856	0.8945 0.9072 0.9098 0.9074 0.9130	0.7111 0.7237 0.7153 0.7218 0.7159	0.7764 0.7880 0.7800 0.7866 0.7799	0.8209 0.8306 0.8237 0.8295 0.8236	0.7488 0.7329 0.7224 0.7362 0.7536	0.8303 0.8174 0.8112 0.8195 0.8328	0.8699 0.8597 0.8552 0.8613 0.8717
	Heterformer	0.8474*	0.9019*	0.9255*	0.7272*	0.7908*	0.8328*	0.7633*	0.8400*	0.8773*

Heterformer captures the heterogeneous structure information and the rich contextualized textual information hidden inside the networks

Part IV - External Knowledge Knowledge-enhanced Graph Learning Heterformer: Transformer-based Deep Node Representation 146 Learning on Heterogeneous Text-Rich Networks

Graph Learning on Textual-edge Graphs

What are textual-edge graphs?

A text-rich network contains a node set, an edge set, and a text set.

Each edge is associated with some textual information

When a person replies to another on social media, there will be a directed edge between them accompanied by the response texts

When a user comments on an item, the user's review will be naturally associated with the user-item edge

Why do we need textual-edge graphs?

- Textual-edge is ubiquitous in the real world
- Textual-edge provides rich information to describe the relationship between nodes

Graph Learning on Textual-edge Graphs

Learn on textual-edge graphs: Edgeformer

Part IV - External Knowledge Knowledge-enhanced Graph Learning Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks

148

Graph Learning on Textual-edge Graphs

Micro-F1

Learn on textual-edge graphs: Edgeformer

Macro-F1

Model

Amazon-Movie

Edge Classification

Link
Prediction

$+\Delta \%$	3.5%	2.1%	5.3%	2.9%	5.9%	3.2%	5.9%	2.6%	2.7%	1.8%
Edgeformer-N	0.2919	0.4344	0.2239	0.3771	0.2395	0.3875	0.1446	0.3000	0.1754	0.3339
BERT+NENN	0.2821	0.4256	0.2127	0.3666	0.2262	0.3756	0.1365	0.2925	0.1619	0.3215
BERT+CensNet	0.1919	0.3462	0.1544	0.3132	0.1437	0.3000	0.0847	0.2436	0.1173	0.2789
GraphFormers	0.2756	0.4198	0.2066	0.3607	0.2176	0.3684	0.1323	0.2887	0.1693	0.3278
BERT+GIN	0.2573	0.4037	0.2000	0.3552	0.2007	0.3522	0.1238	0.2801	0.1708	0.3279
BERT+MeanSAGE	0.2491	0.3972	0.1983	0.3540	0.1952	0.3477	0.1223	0.2791	0.1678	0.3264
BERT+MaxSAGE	0.2780	0.4224	0.2055	0.3602	0.2193	0.3694	0.1312	0.2872	0.1681	0.3264
BERT	0.2391	0.3864	0.1790	0.3350	0.1986	0.3498	0.1274	0.2836	0.1666	0.3252
NENN	0.2565	0.4032	0.1996	0.3552	0.2173	0.3670	0.1297	0.2854	0.1257	0.2854
CensNet	0.2048	0.3568	0.1894	0.3457	0.1880	0.3398	0.1157	0.2726	0.1235	0.2806
GIN	0.2140	0.3648	0.1797	0.3362	0.1846	0.3374	0.1128	0.2700	0.1189	0.2778
MaxSAGE	0.2178	0.3694	0.1674	0.3258	0.1846	0.3387	0.1066	0.2647	0.1173	0.2769
MeanSAGE	0.2138	0.3657	0.1766	0.3343	0.1832	0.3368	0.1066	0.2647	0.1174	0.2768
MF	0.2032	0.3546	0.1482	0.3052	0.1923	0.3443	0.1137	0.2716	0.1040	0.2642
Model	MRR	NDCG	MRR	NDCG	MRR	NDCG	MRR	NDCG	MRR	NDCG
	Amazor	n-Movie	Amazo	on-Apps	Goodrea	ds-Crime	Goodread	ds-Children	StackC	verflow
					~					~
Edgeformer-E	64.18	73.59	60	.67	71.28	61.03	65.	86 5'	7.45	61.71
BERT+nodes	63.00	72.45	59	.72	70.82	58.64	65.	02 54	4.42	60.46
BERT	61.38	71.36	59	.11	69.27	56.41	61.	29 5	1.57	57.72
TF-IDF+nodes	53.59	66.34	50	.56	65.08	49.35	57.	50 4	7.32	56.78
TF-IDF	50.01	64.22	48	.30	62.88	43.07	51.	72 3	9.42	49.90
					<				~	

Amazon-Apps

Micro-F1

Macro-F1

Goodreads-Crime

Micro-F1

Macro-F1

Significant Improvement

Part IV - External Knowledge Knowledge-enhanced Graph Learning Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-Edge Networks

Goodreads-Children

Micro-F1

Macro-F1

149

Topics for Knowledge from External Sources

Graph learning on text-rich graphs

- Graph learning on textual-node graphs
- Graph learning on textual-edge graphs

- Knowledge Graph Embedding
- Advancing KG tasks with text data

Knowledge Graphs

A collection of interlinked entities

- Objects, events or concepts
- Multiple types of entities and relations exist

Facts are represented as triplets (h, r, t)

- ('Paris', 'is_a', 'city')
- ('Alice', 'is_friend_of', 'Bob')

Preliminaries

Goal: Encode (1) entities as low-dimensional vectors and (2) relations as parametric algebraic operations in the continuous space

How-to: Design a score function $f_r(\mathbf{h}, \mathbf{t})$ w.r.t. such embedding vectors so that a true triplet receives higher score than a false one

KGE design rationale: Capture KG patterns

• Symmetry, antisymmetry, inversion and composition

Applications of knowledge graph embedding

- Knowledge graph completion
- Question answering
- Recommender system

Notation & Symbols

- *h*: head entity
- r: relation
- *t*: tail entity
- $f_{\mathbf{r}}(\mathbf{h},\mathbf{t})$: the score function
- $d_{\mathbf{r}}(\mathbf{h}, \mathbf{t})$: the distance function
- True/positive triplet: (*h*, *r*, *t*)
- False/negative triplet: (h', r, t), (h, r, t'),
 (h', r, t')

Preliminaries: Symmetric/Antisymmetric Relations

Symmetric/Antisymmetric Relations

- Symmetric: e.g., Marriage
- Antisymmetric: e.g., hasChild

Formally:

r is **Symmetric**: $r(x,y) \Rightarrow r(y,x)$ if $\forall x, y$ *r* is **Antisymmetric**: $r(x,y) \Rightarrow \neg r(y,x)$ if $\forall x, y$

Preliminaries: Inverse Relations

Inverse Relations

- Hypernym and hyponym:
 - $_{\odot}$ Color is the hypernym (r_{2}) of blue, and blue is the hyponym (r_{1}) of color
- Husband (r_2) and wife (r_1)

Formally:

 r_1 is inverse to relation r_2 : $r_2(x, y) \Rightarrow r_1(y, x)$ if $\forall x, y$

Preliminaries: Composition Relations

Composition Relations

- My mother's husband is my father
- r_1 : hasMother, r_2 : hasHusband
- r_3 : hasFather

Formally:

r_3 is a **composition** of relation r_1 and relation r_2 :

$$r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \text{ if } \forall x, y, z$$

KG Embedding Method #1: TransE

Embedding space: Each entity and relation as a low-dimensional vector in \mathbb{R}^k **Key idea**: Relation r as a translation from the head entity h to the tail entity t

- An ideal/predicted tail entity: $\mathbf{t}_{pred} = \mathbf{h} + \mathbf{r}$
- Score function: $f_r(\mathbf{h}, \mathbf{t}) = -d_r(\mathbf{h}, \mathbf{t}) = -||\mathbf{h} + \mathbf{r} \mathbf{t}||$

Distance function: $d_r(\mathbf{h}, \mathbf{t}) = ||\mathbf{h} + \mathbf{r} - \mathbf{t}||$

Embedding vectors: **h**, **r**, **t**

Part IV - External Knowledge Knowledge-enhanced Graph Learning Translating Embeddings for Modeling Multi-relational Data 156

KG Embedding Method #1: TransE

Training Process

For each positive triplet $(h, r, t) \in S$,

○ Sample a set of corrupted triplets $(h, r, t') \in S'_{(h,r,t)}$ or $(h', r, t) \in S'_{(h,r,t)}$

Part IV - External Knowledge Knowledge-enhanced Graph Learning

KG Embedding Method #1: TransE

Key Properties

Pros

- Can model antisymmetric relations: $\mathbf{h} + \mathbf{r} = \mathbf{t}$, but $\mathbf{t} + \mathbf{r} \neq \mathbf{h}$ if $\mathbf{r} \neq 0$
- Can model inverse relations: $\mathbf{h} + \mathbf{r_1} = \mathbf{t}, \, \mathbf{t} + \mathbf{r_2} = \mathbf{h}, \, \mathbf{r_1} = -\mathbf{r_2}$
- Can model composition relations: $r_3 = r_1 + r_2$

Cons

• Cannot model symmetric relations: $\mathbf{h} + \mathbf{r} = \mathbf{t}$, $\mathbf{t} + \mathbf{r} = \mathbf{h}$, then $\mathbf{r} = 0$

KG Embedding Method #2: DistMult

Embedding space: Each entity and relation as a low-dimensional vector in \mathbb{R}^k **Key idea**: Relation r defined as the elementwise weights of the head entity **Score function**: $f_r(\mathbf{h}, \mathbf{t}) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_j \cdot \mathbf{r}_j \cdot \mathbf{t}_j$

- Intuition: Can be viewed as a dot product between $h \cdot r$ and t

Part IV - External Knowledge Knowledge-enhanced Graph Learning Embedding Entities and Relations for Learning and Inference in Knowledge Bases 159

KG Embedding Method #2: DistMult

Key Properties

Pros

- Can model symmetric relations: $\mathit{f}_r(h,t) = < h, r, t > = \sum_j h_j \cdot r_j \cdot t_j = < t, r, h > = \mathit{f}_r(t,h)$

Cons

- Cannot model antisymmetric relations: $f_r(\mathbf{h}, \mathbf{t})$ and $f_r(\mathbf{t}, \mathbf{h})$ are always the same
- Cannot model inverse relations: if < h, $r_1, t> = < t, r_2, h>$, it means $r_1=r_2$
- Cannot model composition relations: it does not model a bijection mapping from h to t via relation r

KG Embedding Method #3: ComplEx

Embedding space: Each entity and relation as a low-dimensional vector in C^k

Key idea: Explore the asymmetry of the Hermitian dot product to accommodate antisymmetry

Part IV - External Knowledge Knowledge-enhanced Graph Learning

KG Embedding Method #3: ComplEx

Key Properties

Pros

- $_{\odot}$ Can model antisymmetric relations: when Re(r)=0 (e.g., r is purely imaginary)
- $_{\odot}$ Can model symmetric relations: when Im(r)=0 (e.g., r is purely real)
- $_{\odot}$ Can model inverse: when r_1 is the conjugate of r_2

Cons

 \circ Cannot model composition relations: it does not model a bijection mapping from *h* to *t* via relation *r*

Part IV - External Knowledge Knowledge-enhanced Graph Learning

Embedding space: Each entity and relation as a low-dimensional vector in C^k

Key idea: Relations modelled as rotations in complex space

• An ideal tail entity: $\mathbf{t} = \mathbf{h}^{\circ} \mathbf{r}$,

Define each relation r as an element-wise rotation from the head entity embedding **h** to the tail entity embedding **t**, i.e.,

 $\mathbf{t} = \mathbf{h}^{\circ} \mathbf{r}$, where $|\mathbf{r}_j|=1$

° is the element-wise product. More specifically, we have $t_i = h_i r_i$, and

$$\mathbf{r_j} = e^{i\theta_{r,j}}$$

where $\theta_{r,i}$ is the phase angle of r in the j-th dimension

Part IV - External Knowledge Knowledge-enhanced Graph Learning **Notation & Symbols**

- $i = \sqrt{-1}$
- *j*: the j-th embedding dimension

Geometric Interpretation

Score function: $f_r(\mathbf{h}, \mathbf{t}) = -||\mathbf{h}^\circ \mathbf{r} - \mathbf{t}||$

Define the distance function of RotatE as $d_r(\mathbf{h}, \mathbf{t}) = ||\mathbf{h}^\circ \mathbf{r} - \mathbf{t}||$

(b) RotatE models r as rotation in complex plane.

Part IV - External Knowledge Knowledge-enhanced Graph Learning

RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space 164

Modeling the Relation Patterns

A relation *r* is symmetric if and only if $\mathbf{r}_{j} = \pm 1$, i.e.,

An example on the space of C

$$\mathbf{r}_{\mathbf{j}} = -1 \text{ or } \theta_{r,j} = \pi$$

 $\theta_{r,j} = 0 \text{ or } \pi$

Part IV - External Knowledge Knowledge-enhanced Graph Learning RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space 165

KG Embedding Method #4: RotatE Modeling the Relation Patterns

Relation r is antisymmetric if and only if $\mathbf{r}^{\circ} \mathbf{r} \neq \mathbf{1}$

Two relations r_1 and r_2 are inverse if and only if $\mathbf{r}_2 = \overline{\mathbf{r}_1}$, i.e.,

$$\theta_{2,j} = -\theta_{1,j}$$

A relation $\mathbf{r}_3 = e^{i\theta_3}$ is a composition of two relations $\mathbf{r}_1 = e^{i\theta_1}$ and $\mathbf{r}_2 = e^{i\theta_2}$ if and only if $\mathbf{r}_3 = \mathbf{r}_1 \circ \mathbf{r}_2$, i.e., $\theta_3 = \theta_1 + \theta_2$

Part IV - External Knowledge Knowledge-enhanced Graph Learning RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space 166

Optimization

Negative sampling loss

Make the score of true triplet as large as possible, but the score of false one as small as possible

$$L = -\log \sigma (\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{j=1}^{n-1} \frac{1}{k} \log \sigma (d_r(\mathbf{h}'_j, \mathbf{t}'_j) - \gamma)$$

Positive triplet
Negative margin
triplet

 γ is a fixed margin, σ is the sigmoid function, and $(\mathbf{h}'_{\mathbf{j}}, \mathbf{r}, \mathbf{t}'_{\mathbf{j}})$ is the j-th negative triplet

- Controls the minimum separation between the scores of positive and negative triplets.
- Prevent model from over-fitting

Self-adversarial Negative Sampling

Traditionally, the negative samples are drawn in a uniform way

- Inefficient as training goes on since many samples are obviously false
- Does not provide useful information
- A self-adversarial negative sampling
 - Sample negative triplets according to the current embedding model
 - Starts from easier samples to more and more difficult samples
 - Curriculum Learning

$$p(h'_j, r, t'_j | \{(h_k, r_k, t_k)\}) = \frac{\exp \alpha f_r(h'_j, t'_j)}{\sum_k \exp \alpha f_r(h'_k, t'_k)}$$

 α is the temperature of sampling. $f_r(h'_j, t'_j)$ measures the salience of the triplet

The Final Objective

Instead of sampling, treating the sampling probabilities as weights

• p is used to weight each negative sample

$$L = -\log \sigma(\gamma - d_r(\mathbf{h}, \mathbf{t})) - \sum_{j=1}^{n} p(h'_j, r, t'_j) \log \sigma(d_r(\mathbf{h}'_j, \mathbf{t}'_j) - \gamma)$$
Positive triplet Negative margin

Positive triplet

Intuitions:

- the smaller the $d_r(\mathbf{h}'_i, \mathbf{t}'_i)$ is,
- the more likely the triplet is true,
- the harder the negative triplet,
- the higher the weight p

Part IV - External Knowledge Knowledge-enhanced Graph Learning

Notation & Symbols

- *j*: the j-th negative sample
- *n*: the number of negative samples
- γ : the margin

triplet

margin

Empirical Comparisons of KG Embedding

Observation

			FB15k-2	237		WN18RR				
	MR	MRR	H@1	H@3	H@10	MR	MRR	H@1	H@3	H@10
TransE	357	.294	-	-	.465	3384	.226	-	-	.501
DistMult	254	.241	.155	.263	.419	5110	.43	.39	.44	.49
ComplEx	339	.247	.158	.275	.428	5261	.44	.41	.46	.51
ConvE	244	.325	.237	.356	.501	4187	.43	.40	.44	.52
pRotatE	178	.328	.230	.365	.524	2923	.462	.417	.479	.552
RotatE	177	.338	.241	.375	.533	3340	.476	.428	.492	.571

RotatE performs the best, on both datasets, on different metrics

KG Embedding Method: Summary

Model	Score Function	Symmetry	Antisymmetry	Inversion	Composition
TransE	- h + r - t	×	✓	✓	~
DistMult	< h , r , t >	\checkmark	×	×	×
ComplEx	$\operatorname{Re}(<\mathrm{h},\mathrm{r},\mathrm{t}>)$	\checkmark	✓	✓	×
RotatE	$- \mathbf{h}^{\circ} \mathbf{r} - \mathbf{t} $	\checkmark	✓	~	~

(Some) KGE models in recent literature:

Part IV - External Knowledge Knowledge-enhanced Graph Learning

Advancing KG tasks with text data

An example of a KG with entity descriptions

- Descriptions contain abundant information about entities
- Descriptions can help to represent the relational facts between them

Part IV - External Knowledge Knowledge-enhanced Graph Learning KEPLER: A Unified Model for Knowledge Embedding 172 and Pre-trained Language Representation

Train encoder with both KG and NLP losses: KEPLER

KEPLER encodes text descriptions as entity embeddings, and train the shared encoder via MLM loss

Part IV - External Knowledge Knowledge-enhanced Graph Learning KEPLER: A Unified Model for Knowledge Embedding 173 and Pre-trained Language Representation

Graph Learning Enhanced by External Knowledge

Chapter summary

Graph learning on text-rich graphs

- Graph learning on textual-node graphs
- Graph learning on textual-edge graphs

Graph learning on knowledge graphs

- Knowledge Graph Embedding
- Advancing KG tasks with text data

Tutorial Outline

- Preliminaries and Foundations
- Graph Learning Enhanced by Knowledge from Data
- Graph Learning Enhanced by Knowledge from Models
- Graph Learning Enhanced by Knowledge from Humans and Domains
- Graph Learning Enhanced by Knowledge from External Sources
- Knowledge-enhanced Graph Learning for Real-world Applications
 - Summary and Future Directions

Applications

2 (1) Knowledge-enhanced Graph Learning for Recommendation

- Path-based recommendation methods
- Propagation-based recommendation methods

2) Knowledge-enhanced Graph Learning for Natural Language Processing (NLP)

- Natural Language Understanding
- Commonsense Reasoning
- Advancing LLMs with Knowledge

An example KG for recommendation

Watched Bob Watched friend acted direct Watched Alice **Blood Diamond** directed James Titanic Cameron Recommended movies

Part V - Applications Knowledge-enhanced Graph Learning

Knowledge-enhanced Graph Learning for Recommendation

Preliminary: traditional collaborative filtering

watched by both users

If a person A has the same preference as a person B on a product, A is more likely to have B's preference on a different product than that of a randomly chosen person

Knowledge-enhanced Graph Learning for Recommendation

Path-based recommendation methods: SemRec

Graph schema of Douban data

- Metapaths captures different semantic knowledge
- Users appeared in same metapath can have similar ratings

Meta Path	Semantic Meaning	Recommendation Model
UU	friends of the target user	Social recommendation
UGU	users in the same group of the target user	Member recommendation
UMU	users who view the same movies with the target user	Collaborative recommendation
UMTMU	users who view the movies having the same types with that of the target user	Content recommendation

179

Knowledge-enhanced Graph Learning for Recommendation

Problems of SemRec

180

Metapaths might fail to capture the complex structure and all the semantic knowledge

Graph schema of Yelp data

A: aspect extracted from reviews R: reviews U: users B: business Cat: category of item Ci: city.

> Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks

Part V - Applications Knowledge-enhanced Graph Learning
Address problems of SemRec: FMG

Metapaths might fail to capture the complex structure and all the semantic knowledge

What if R_1 and R_2 give the same rating for a business B_1 and mention the same aspect A_1 ?

Use metagraph, a directed acyclic graph that contains more semantic knowledge

Part V - Applications Knowledge-enhanced Graph Learning

181

Path-based recommendation methods: Limitations

- The choice of metapath and metagraph need to be defined manually
- Metapath and metagraph varying across datasets
- It might require labor-intensive feature engineering to extract relevant paths and structures

Part V - Applications Knowledge-enhanced Graph Learning

Knowledge Graph Convolutional Networks for Recommender Systems

$e^u[H]$ item (\mathbf{v}^u) predicted probability

 $e_2^u[h]$

 $\mathbf{e}_1^u[h]$

 $\tilde{\pi}^{u}_{r_{v,e_2}}$

 $\widetilde{\pi}^{u}_{r_{v,e_{1}}}$

Learning item representations by aggregation on KG

Use other items to enhance the representation of target item

Knowledge-enhanced Graph Learning for Recommendation Knowledge graph-aware recommendation methods: KGCN

 $e^{u}[h]$

 $e^{u}[h+1]$

 $\mathbf{e}_{3}^{u}[h]$

 $\mathbf{e}_{4}^{u}[h]$

iteration h + 1

user

 $\tilde{\pi}^{u}_{r_{v,e_3}}$

 $\tilde{\pi}^{u}_{r_{v,e_{4}}}$

u

A two-layer receptive field

The framework of KGCN

183

Knowledge graph-aware recommendation methods: KGCN

KGCN achieves the best results, demonstrating the benefit of incorporating knowledge from KG

The results of top-K recommendation on Book-Crossing dataset

Knowledge graph-aware recommendation methods: KGNN-LS

KGNN-LS is Similar to KGCN. First extract a graph of interest to user u, then use GNNs to learn on this user-specific graph

Part V - Applications Knowledge-enhanced Graph Learning

Knowledge-aware Graph Neural Networks with Label 185 Smoothness Regularization for Recommender Systems

One step further, KGNN-LS utilizes label smoothness: adjacent items in KG are likely to have similar user preferences

Part V - Applications Knowledge-enhanced Graph Learning Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems

186

Utilize both item-item connections from KG and user-item direct interaction to learn user and item representations

Aggregate neighbor information with attention mechanism: reveal the importance of high-order connections

Part V - Applications Knowledge-enhanced Graph Learning KGAT: Knowledge Graph Attention 188 Network for Recommendation

Knowledge graph-aware recommendation methods: KGAT

	Amazo	n-Book	Last-FM		Yelp2018		
	recall	ndcg	recall	ndcg	recall	ndcg	
FM	0.1345	0.0886	0.0778	0.1181	0.0627	0.0768	
NFM	0.1366	0.0913	0.0829	0.1214	0.0660	0.0810	
CKE	0.1343	0.0885	0.0736	0.1184	0.0657	0.0805	
CFKG	0.1142	0.0770	0.0723	0.1143	0.0522	0.0644	
MCRec	0.1113	0.0783	-	-	-	-	
RippleNet	0.1336	0.0910	0.0791	0.1238	0.0664	0.0822	
GC-MC	0.1316	0.0874	0.0818	0.1253	0.0659	0.0790	
KGAT	0.1489*	0.1006*	0.0870*	0.1325*	0.0712*	0.0867*	
%Improv.	8.95%	10.05%	4.93%	5.77%	7.18%	5.54%	

Recommendation Performance Comparison

KGAT achieves the best performance

Applications

1) Knowledge-enhanced Graph Learning for Recommendation

- Path-based recommendation methods
- Propagation-based recommendation methods
- 2) Knowledge-enhanced Graph Learning for Natural Language Processing (NLP)
 - Natural Language Understanding
 - Commonsense Reasoning
 - Advancing LLMs with Knowledge

Knowledge-Augmented Methods for Natural Language Processing

191

Part V - Applications Knowledge-enhanced Graph Learning

Knowledge-enhanced Graph Learning for NLP

- A language model (LM) learns how to express
 - I go school to to want. X I want to go to school. ✓
- Knowledge indicates what to express
 Q: Where is the painting Mona Lisa?
 A: It is in Louvre, Paris.

Knowledge-Augmented Methods for Natural Language Processing

Knowledge-enhanced Graph Learning for NLP

To integrate knowledge into Language Models

- Step 1: Ground language into related knowledge
 String matching, NER, Entity linking, information retrieval
 Identify concepts and relations in the knowledge source
- Step 2: Represent knowledge
 Concept descriptions, Graph embeddings
- Step 3: Fuse knowledge representation into language model
 - Concatenate concept descriptions into input
 - Append embeddings into input embeddings

del \vec{h}_{2} \vec{n}_{11} \vec{h}_{1} \vec{h}_{1} \vec{h}_{1} \vec{h}_{1} \vec{h}_{1} \vec{h}_{1} \vec{h}_{2} \vec{h}_{1} \vec{h}_{1} \vec{h}_{2} \vec{h}_{1} \vec{h}_{1} \vec{h}_{2} \vec{h}_{1} \vec{h}_{2} \vec{h}_{1} \vec{h}_{2} \vec{h}_{1} \vec{h}_{2} \vec{h}_{1} \vec{h}_{2} \vec{h}_{2} \vec{h}_{1} \vec{h}_{2} \vec{h}_{2} \vec{h}_{1} \vec{h}_{2} $\vec{h$

The **pen** is on the **desk**.

What are the knowledge sources for NLP

Wikipedia-based knowledge

Knowledge-enhanced Graph Learning

Domain-specific knowledge

ConceptNet

Commonsense knowledge

Knowledge-Augmented Methods for Natural Language Processing

Part V - Applications Knowledge-enhanced Graph Learning

bob

dylan

wrote

blow

Knowledge-enhanced Graph Learning for NLP Natural Language Understanding: ERNIE

Bob Dylan Blowin' in the Wind

 $e_1^{(i)}$ $e_2^{(i)}$ Entity Output Token Output $w_1^{(i)}$ $w_2^{(i)}$ $w_3^{(i)}$ $w_4^{(i)}$ $w_n^{(i)}$ Aggregator Information Fusion $ilde{w}_3^{(i)}$ $ilde{w}_4^{(i)}$ $\tilde{w}_2^{(i)}$ $\tilde{e}_{2}^{(i)}$ $\tilde{e}_1^{(i)}$ ${}^{\bullet}$ Multi-Head Attention Multi-Head Attention $w_4^{(i-1)}$ $|e_1^{(i-1)}|$ $w_2^{(i-1)}$ $w_3^{(i-1)}$ $\left(w_n^{(i-1)}\right)$ $e_{2}^{(i-1)}$ Entity Input Token Input ...

1962

Bob Dylan wrote Blowin' in the Wind in 1962

- Use TransE to compute entity embeddings from Wikidata
- Concatenate token input and entity embeddings for learning

Natural Language Understanding: ERNIE

Model	Acc.	Macro	Micro
NFGEC (Attentive) NFGEC (LSTM)	54.53 55.60	74.76 75.15	71.58 71.73
BERT	52.04	75.16	71.63
ERNIE	57.19	76.51	73.39

Entity typing task on the FIGER dataset

Model		FewRel			TACRED	
widder	P	R	F1	P	R	F1
CNN	69.51	69.64	69.35	70.30	54.20	61.20
PA-LSTM	-	-	-	65.70	64.50	65.10
C-GCN	_	-	-	69.90	63.30	66.40
BERT	85.05	85.11	84.89	67.23	64.81	66.00
ERNIE	88.49	88.44	88.32	69.97	66.08	67.97

Relation classification task

Part V - Applications Knowledge-enhanced Graph Learning

Model	MNLI-(m/mm) 392k	QQP 363k	QNLI 104k	SST-2 67k
BERT _{BASE}	84.6/83.4	71.2	-	93.5
ERNIE	84.0/83.2	71.2	91.3	93.5
Model	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k	RTE 2.5k
Model BERT _{BASE}	CoLA 8.5k 52.1	STS-B 5.7k 85.8	MRPC 3.5k 88.9	RTE 2.5k 66.4

General Language Understanding Evaluation (GLUE) benchmark

ERNIE outperforms BERT across tasks

Knowledge-enhanced Graph Learning for NLP Natural Language Understanding: K-BERT

Input sentence: Tim Cook is currently visiting Beijing now

- K-BERT injects relevant triples from the KG and transform the original sentence into a knowledge-rich sentence tree for encoding
- K-BERT is equipped with an editable KG, which can be adapted to its application domain.
 For example, a medical KG can be used to grant the K-BERT with medical knowledge

Natural Language Understanding: K-BERT

Results on different domain-specific tasks												
Models\Datasets	Finance_Q&A						Finance_NER			Medicine_NER		
	P.	R.	$F \perp$	P.	R.	F1	P.	R.	F1	P.	R.	$F \perp$
	Pre-trained on WikiZh by Google.											
Google BERT	81.9	86.0	83.9	83.1	90.1	86.4	84.8	87.4	86.1	91.9	93.1	92.5
K-BERT (HowNet)	83.3	84.4	83.9	83.7	91.2	87.3	86.3	89.0	87.6	93.2	93.3	93.3
K-BERT (CN-DBpedia)	81.5	88.6	84.9	82.1	93.8	87.5	86.1	88.7	87.4	93.9	93.8	93.8
K-BERT (MedicalKG)	-	-	-	-	-	-	-	-	-	94.0	94.4	94.2

K-BERT benefits from the domain knowledge in KGs and performs well across different domain-specific tasks

Commonsense reasoning: KagNet

An example of using external commonsense knowledge for inference in natural language commonsense questions

Part V - Applications Knowledge-enhanced Graph Learning KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning 198

Knowledge-enhanced Graph Learning for NLP Commonsense reasoning: KagNet

- For each pair of question and answer candidate, KagNet retrieves a graph from external knowledge graphs (e.g. ConceptNet)
- The retrieved graph contains relevant knowledge for determining the plausibility of a given answer choice

Commonsense reasoning: KagNet

	10 (%) of IHtrain		50 (%) o	f IHtrain	100 (%) of IHtrain		
Model	IHdev-Acc.(%)	IHtest-Acc.(%)	IHdev-Acc.(%)	IHtest-Acc.(%)	IHdev-Acc.(%)	IHtest-Acc.(%)	
Random guess	20.0	20.0	20.0	20.0	20.0	20.0	
Gpt-FineTuning Gpt- KagNet	27.55 28.13	26.51 26.98	32.46 33.72	31.28 32.33	47.35 48.95	45.58 46.79	
BERT-BASE-FINETUNING BERT-BASE- KAGNET	30.11 31.05	29.78 30.94	38.66 40.32	36.83 39.01	53.48 55.57	53.26 56.19	
BERT-LARGE-FINETUNING BERT-LARGE-KAGNET	35.71 36.82	32.88 33.91	55.45 58.73	49.88 51.13	60.61 62.35	55.84 57.16	
Human Performance	-	88.9	_	88.9	-	88.9	

Using KagNet outperforms fine-tuning the language models themselves

Commonsense reasoning: KEAR

Score Prediction

Related knowledge is retrieved from external sources, e.g., knowledge graph, dictionary and training data, using the input as the key and then integrated with the input

Human Parity on CommonsenseQA: Augmenting Self-Attention with External Attention

Commonsense reasoning: KEAR

Method	E-l+VAT	D-xxl	DV3-l
Base	82.1	83.8	84.6
+ KG	85.2	86.4	86.7
+ Dictionary	83.8	84.0	85.1
+ Training data	84.0	86.4	87.1

E-I+VAT: ELECTRA-large with VAT **D-xxI**: DeBERTa-xxlarge **DV3-I**: DeBERTaV3-large

Results of applying external attention to different knowledge sources

- These knowledge sources bring gains in commonsense reasoning accuracy across all base encoder models
- Generally, knowledge graphs contribute the most

What are LLMs (Large Language Models)?

A type of machine learning model that can perform a variety of language tasks.

Part V - Applications Knowledge-enhanced Graph Learning

204

Why LLMs Need External Knowledge?

The problem of hallucination

You

Were there fossil fuels in the ground when humans evolved?

Options:

(a) This was only created by humans(b) Humans predate fossil fuel formation(c) Significant supplies accumulated prior(d) None of these

Wrong Answer

ChatGPT

(b) Humans predate fossil fuel formation

Explanations that Make No Sense Fossil fuels, such as coal, oil, and natural gas, are formed from the remains of ancient plants and microorganisms that lived millions of years ago. The process of fossil fuel formation takes a very long time, and it began long after the evolution of early humans. Therefore, humans predate the formation of fossil fuels, making option (b) the correct answer.

0070

Graph Neural Prompting with Large Language Models

205

Graph Neural Prompting (GNP)

Extracted Knowledge

Graph Neural Prompting (GNP)

Extracted Knowledge — > Real-life Applications

Part V - Applications Knowledge-enhanced Graph Learning Graph Neural Prompting with Large Language Models

Graph Neural Prompting (GNP)

Results Averaged Across 4 Commonsense and 2 Biomedical Datasets

Part V - Applications Knowledge-enhanced Graph Learning Graph Neural Prompting with Large Language Models

209

Applications

Chapter summary

1) Knowledge-enhanced Graph Learning for Recommendation

- Path-based recommendation methods
- Propagation-based recommendation methods

2) Knowledge-enhanced Graph Learning for Natural Language Processing (NLP)

- Natural Language Understanding
- Commonsense Reasoning
- Advancing LLMs with Knowledge

Tutorial Outline

- Preliminaries and Foundations
- Graph Learning Enhanced by Knowledge from Data
- Graph Learning Enhanced by Knowledge from Models
- Graph Learning Enhanced by Knowledge from Humans and Domains
- Graph Learning Enhanced by Knowledge from External Sources
- Knowledge-enhanced Graph Learning for Real-world Applications
- Summary and Future Directions

Summary Knowledge-enhanced Graph Learning

Data

1) single-instance level perception

Node sampling for node positions (<u>P-GNN</u>)

2) multiple-instance level perception

- Path sampling for positional and semantic information (<u>HGMAE</u>)
- Subgraph sampling for community information (<u>SEAL</u>, <u>WalkPool</u>)

Knowledge from **Data**

Knowledge

Data Knowledge

Model

Data

Knowledge from models

Summary: Knowledge-enhanced Graph Learning

Knowledge from Models

Knowledge

Learned Knowledge

Teacher

Model

Student

Model

Summary: Knowledge-enhanced Graph Learning

How to obtain knowledge from

- Logits (<u>TinyGNN</u>, <u>BGNN</u>)
- Embeddings (<u>GraphAKD</u>)
- Structures (<u>LSP</u>, <u>G-CRD</u>)

A recent learning strategy

 distilling an MLP to replace GNNs (<u>GLNN</u>, <u>NOSMOG</u>)

More details can be found in this survey

Knowledge Distillation on Graphs: A Survey 217

Summary Knowledge-enhanced Graph Learning

Graph learning enhanced by human feedback

 Graph active learning with human knowledge (<u>ALG</u>, <u>IGP</u>, <u>OWGAL</u>)

Graph learning enhanced by domain knowledge

 Chemistry domain knowledge for molecular property prediction (<u>GROVER</u>, <u>MGSSL</u>)

219

Summary Knowledge-enhanced Graph Learning

- Graph learning on textual-node graphs (<u>PATTON</u>, <u>Heterformer</u>)
- Graph learning on textual-edge graphs (<u>Edgeformers</u>)

Graph learning on knowledge graphs

- Knowledge Graph Embedding (<u>TransE</u>, <u>DistMult</u>, <u>ComplEx</u>, <u>RotatE</u>)
- Advancing KG tasks with text data (<u>KEPLER</u>)

Knowledge from

External Sources

Model

Knowledge

External Knowledge

External

Sources

What are the benefits of utilizing knowledge

Future Directions

1) How to obtain high-quality knowledge?

Knowledge sources can contain several issues such as Noises, biases, imbalances, missing or incorrect knowledge

Therefore, several research questions arise:

- How to detect and mitigate these issues?
- How to extract high-quality knowledge given these issues?
- How to verify the accuracy and authenticity of the knowledge?
- How to construct knowledge bases without these issues?

Future Directions

2) How to Integrating knowledge from different sources?

Existing works mainly consider leveraging knowledge from one source, while ignoring the fact that various sources can provide different knowledge

Therefore, several research questions arise:

- How to identify the right knowledge sources?
- How to prioritize and extract knowledge from different sources?
- How to combine knowledge with different modalities or formats?
- How to integrate knowledge in a complementary manner?

Future Directions

3) How to handle new knowledge?

New knowledge emerges incrementally and continuously in different time periods

Therefore, several research questions arise:

- How to collect, measure, and evaluate new knowledge?
- How to dynamically update new knowledge into knowledge base?
- How to forget old and irrelevant knowledge?
- How to balance and encode new knowledge?

AAAI-24 Tutorial Feb 2024, Vancouver

Thanks for listening!

Tutorial Website:

Yijun is looking for job opportunities

yijuntian.com/tutorial